English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51721268      Online Users : 622
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/53166


    Title: 利用平滑係數與分量迴歸縱橫資料模型估計生產效率
    Other Titles: Estimating Production Efficiency under the Smooth Coefficient and the Quantile Regression Panel Data Model
    Authors: 黃台心
    Contributors: 國立政治大學金融系
    行政院國家科學委員會
    Keywords: 平滑係數模型生產效率分量迴歸蒙地卡羅模型
    smooth coefficient model production efficiency quantile regressionMonte Carlo simulations
    Date: 2008
    Issue Date: 2012-06-25 15:16:49 (UTC+8)
    Abstract: 本次專題研究計畫案,配合國科會鼓勵申請多年期計畫的政策,打算申請三年期研究計畫,俾對研究主題有較為深入的探討,期獲得更有價值的研究成果。實證分析部分,將利用我國經濟部收集的「工廠校正資料」,期限涵蓋民國91 年至94 年,隨執行期間拉長,考慮逐步納入民國96 和97 兩年資料。第一年的研究計畫,引入平滑係數迴歸模型(smooth coefficient regression model) 又稱係數函數模型(functional-coefficient model),利用縱橫資料(panel data)分析生產效率,應屬生產力與效率領域首度嘗試。平滑係數模型是無母數迴歸的一般化模型,避免參數迴歸模型可能存在的模型設定錯誤問題,以及迴歸係數為未知常數的限制,得以更適切描述廠商生產特性。此外,在隨機干擾項為組合誤差的設定下,可以估計廠商技術效率,進一步評估各生產單位的經營績效。為證明本研究估計方法,可以獲得具一致性估計式,將採用Monte Carlo Simulation,以電腦模擬方式,分析各估計式的偏誤量情形。最後,運用工廠校正資料,進行實證分析。第二年將焦點放在分量參數迴歸模型,仍然利用縱橫資料分析生產效率。分量迴歸模型的特色,在於吾人可在不同分位量(quantile) 上,例如0.2、0.4、0.5、0.6、0.8、0.9 等,進行迴歸分析,不再侷限於傳統平均數迴歸分析。理論上,在不同分位量上,投入與產出的函數關係應有不同,研究者能夠更清楚瞭解廠商生產特性。同樣,為驗證本研究估計方法用於縱橫資料分析,估計式仍保有一致性,將採Monte Carlo Simulation 為之; 也會使用「工廠校正資料」,從事實證分析。第三年計畫將前兩年的研究主題結合,即合併考慮平滑係數與分量迴歸模型,利用縱橫資料分析廠商生產效率。由於結合兩種先進分析方法,期在研究方法與實證分析上,有所突破,故亦打算兼採Monte Carlo Simulation 與利用工廠校正資料進行實證分析。面臨主要困難,在於如何運用分量迴歸技巧,在縱橫資料架構下,估計平滑係數,估計式且須具備一致性和(或)有效性。
    This proposal plans to spend three consecutive years to thoroughly examine the production efficiency and productivity of Taiwan’s manufacturing industry, using the newly developed methods of smooth coefficient models and quantile regression. In the first year, the smooth coefficient model will be applied to estimate the production function of the manufacturing sector with inputs labor and capital, say, under the framework of panel data with composed errors. The expenditure of research and development (R&D) of firms may be defined as the smooth variable. Hence, both the coefficients of labor and capital depend on R&D. Furthermore, their marginal products and returns to scale also vary with R&D. A firm spends a larger amount on R&D is expected that its marginal products of labor and capital and production efficiency will be higher than would otherwise. To show the proposed estimators are consistent Monte Carlo simulations will be performed. In the second year, a quantile regression model is applied to study the production efficiency of Taiwan’s manufacturing industry. Different from the previous works, the current study will extend the conventional quantile regression to a panel data setting. Under various quantiles, such as 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, the estimated production coefficients are expected to reflect different production characteristics, which nests the method of ordinary least squares (OLS) or least absolute deviation (LAD) a special case. The OLS and the LAD methods provide information on the averaging behavior or central tendency of a distribution. They fail to offer useful information about the tail behaviors of that distribution. Monte Carlo simulations will be conducted to confirm that the derived estimators are indeed consistent. Finally, the smooth coefficient model and the quantile regression will be combined to investigate the production performance of Taiwan’s manufacturing firms in the context of panel data. The main challenge to be met is how to derive an appropriate estimation procedure that allows for employing the quantile regression approach to estimate the smooth coefficients, on the one hand, and leads to consistent and possibly efficient estimators, on the other. Therefore, Monte Carlo simulations will be adopted as an auxiliary means.
    Relation: 應用研究
    學術補助
    研究期間:9708~ 9807
    研究經費:720仟元
    Data Type: report
    Appears in Collections:[金融學系] 國科會研究計畫

    Files in This Item:

    File SizeFormat
    972416H004.pdf270KbAdobe PDF2984View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback