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|. Introduction

The partially linear model considered by Robinson (1988) and Stock (1989)
offers a compromise by combining an unknown smooth function with a prespecified
linear function. Recently, a competitor of partially linear model, known as a
semiparametric smooth coefficient model (SSCM) or as avarying coefficient model,
has received much attention by researchers. It isintroduced by Cleveland et al.
(1991) to generalize the employment of local regression techniques from
one-dimensional to multidimensional setting. The SSCM is more flexible than the
partialy linear model asit allowsfor al or apart of the coefficients to be functions of
exogenous variables, including atimetrend. It thus has been successfully employed
to analyze financial and economic data. The model can also be used to analyze the
time series autoregressive model.  See, for example, Chen and Tsay (1993), Cheng
and Zhang (2007), Fan and Zhang (1999), and Hastie and Tibshirani (1993).

The SSCM isalocally parametric model and its computation involved in the
estimation is conceptually not too complicated. There are three methods in the
literature designed for estimating the model. Among them, the local polynomial
smoothing approach is suggested by Fan and Zhang (2008), and has been used by, e.g.,
Wu et a. (1998), Hoover et a. (1998), Fan and Zhang (1999), and Kauermann and
Tutz (1999). Li et d. (2002) propose a SSCM that nests a partially linear model asa
special case. Also see, for example, Fan (1992), Fan and Zhang (1999), and Cai et al.
(20008, 2000b).

The current paper goes one step ahead to a panel data setting and allows for the
presence of production inefficiency varying with time.  Following Aigner et al.
(1977), Meeusen and van den Broeck (1977), Kumbhakar (1990), and Battese and

Coelli (1992), the production inefficiency is modeled under the framework of the



stochastic frontier approach (SFA). Fan et a. (1996) develop a semiparametric
estimation procedure in the context of the SFA using cross-sectional data.

A partially linear model in the context of panel data can be further generalized to
a semiparametric smooth coefficient model that is given by

Yo = a(z) + Xi () + &, 1)
where subscriptsi (= 1,...,n)andt (= 1,..., T) index firmand time, y isthe
dependent variable, «(.) isan unknown function of vector z, belonging to the
nonparametric part of the model, X is avector of explanatory variables, £(.) isthe
corresponding vector of unspecified smooth functions of z, and & denotesthe
random disturbance uncorrelated with either z or X.

Compared to the published approaches, our model may have the following
distinctive features. The semiparametric smooth coefficient model of (1) is
advantageous in that its specification is more flexible than a parametric linear model
and apartially linear model. The panel data setting of model (1) allows for time
variant composed errors particularly suitable for, but not restricted to, the study of the
evolution of managerial efficiencies.®  Contrary to the partially linear model,
coefficient vector S(.) isnot forced to be constant. It isallowed to be dependent
upon some variables z, capturing the non-neutral effectsof zony. Asclaimed by Li
et a. (2002), the sample size required to yield areliable semiparametric estimation is
not as large as that required for estimating a nonparametric model. Given the
forgoing features, model (1) offers aflexible specification at least |essening the

potential specification error.

! The assumption of time-invariant (in)efficiency is strong and unrealistic due to the fact that firms are
usually operating in a competitive atmosphere. It ishard to believe that a firm’s technical
efficiency remains constant through many time periods and is still viable, except for, e.g., a
state-owned enterprise.



II. Semiparametric Smooth Coefficient Model with Composed Errors

Equation (1) differs from the standard nonparametric, partialy linear, and
semiparametric smooth coefficient regression models due to the nonzero conditional
mean of g, given X, and z,. This leads to a biased estimator of the smooth
intercept @ when kernel smoothing technique of, say, Li et a. (2002) are employed
to estimate the coefficients of interest. It is therefore necessary to cope with the
non-zero mean problem in the first place. We simply combine the method of Li at al.
(2002) with those of Fan et al. (1996) and Robinson (1988), but generalize to the

panel data setting with time-varying technical efficiency.

where v, is a two-sided

Error term ¢, is assumed to be equa to v, -U,, A

norma random variable and identically and independently distributed (i.i.d.) as
N(0,c62). Following Battese and Coelli (1992), inefficiency term U, is specified
as U, =uexp[-n(t-T)], in which u is a time-invariant nonnegative random

variable distributed as ‘N(O,af) and n is an extra unknown parameter. The

detailed estimation procedure is overlooked here to save space.
II1. Monte Carlo Simulations

This section conducts a variety of Monte Carlo simulations to gain further insight
into the finite sample performance of the proposed estimators.  The purposes of the

2

simulations are threefold.  First, it isimportant to seeif 7, A,and 6% arerobust

to functional form specification. To be more specific, we consider two different SFA
models with the same covariates and error-related parameters, but different sets of
smooth intercept and smooth coefficient. This aims to examine whether the changes
of smooth intercept and smooth coefficient in their forms and magnitudes incur

drastic impacts on the remaining parameter estimates. Second, we plan to study the



effect of sample size on the accuracy of 7, A,and 6% by shifting the number of

firms (n) and the sample period (T). It isimportant to check whether the

performance of the three estimators is considerably influenced by the slower
convergenceratesof () and B(.) inthecasesof finitesamples. Thisis

empirically meaningful in panel data context, where the inefficiency term is assumed
to be time-variant and evolves nonlinearly. Our results facilitate researchers
adopting the SSCM to examine efficiency and productivity using micro- and
macro-level panel data.  Thisis perhaps the main contribution of the current paper.

The last objective isto understand the likely effect of variousvaluesof A onthe
performance of estimators 62, 67 and 7. Various sets of prescribed values of

A areinvestigated, where for ease of comparison we employ the same sets of values
aslisted in Table 2 of Aigner et a. (1977). The same sets of values are al so adopted
by Fan et al. (1996).
V. An Empirical Illustration

In this section we perform an empirical study to compare the performance of the
SSCM with that of a purely parametric model. The balanced panel data used here
are similar to that used by Duffy and Papageorgiou (2000) and Kneller and Stevens
(2003). The output (Y) is represented by GDP and the input of capital stock (K) is
measured by the aggregate physical capital stock. Both variables are further
converted into constant, end-of-period 1987 U.S. dollars for all 81 countries over the
period 1960-1987. Labor (L) is measured by the number of individualsin the
workforce between ages of 15 and 64. Human capital (2) is measured by the mean
years of schooling of the workforce. Readers are suggested to refer to the appendix
of Duffy and Papageorgiou (2000) for details about the construction of this data.
Table 5 shows the summary statistics for variablesIn(Y), In(L), In(K) andz

4



The SSCM we consider alows the coefficients of In(K) and In(L) to vary
with variable z in order to capture the possible nonneutral productivity effect on
national output, without the need of specifying a particular function form, a priori.

The maintained model is specified as:

InY, =a(z,)+ B (2,)INK, + B (z)InL, +V, —ue™™™ @
where i =12,---,81 and t=12,---,28. The parametric model is specified as the

Cobb-Douglas form with variable human capital being treated as extrainputs:
InY, =a,+a,z, + O‘zzif + B InK + B InL +v, — uiein(tiT) (3

Table 1 tabulates the mean values and the 10", median, and 90th of the smooth
coefficients estimates of our semiparametric model (2). Table 2 presents the
parameter estimates of the Cobb-Douglas function.

The ML estimates (standard errors) of 4 and n of the SSCM are 2.3367

(0.0052) and 0.0217 (1.75x10°°), respectively. Asaresult the implied estimates of
o’ and o’ are0.1225 and 0.0224, respectively. Evidence is found that the rate of

the technical efficiency improvement (n) of the SSCM is faster than that of the
Cobb-Douglas function.  This indicates that the potentially restrictive Cobb-Douglas
functional form may not be well descriptive of the true but unknown production
technology, in such a way as to underestimate the evolution speed of the technical
efficiency. In addition, the average technical efficiency score derived from the
Cobb-Douglas function is as low as 0.431, which is much less than 0.714 of the
SSCM. The left box of Figure 1 draws the residual distribution of (2), whereas the
right box draws that of (3). The former distribution is seen to be somewhat higher
than the latter distribution, due partially to the smaller inefficiency of (2) than that of
(3). Thefigure shows that the middle 50% of the residuals yielded from (2) are less

dispersed than those from (3). The SSCM outperforms the Cobb-Douglas model in

5



terms of the goodness of fit, since the R-squares of the SSCM and the Cobb-Douglas

models are equal to 0.927 and 0.648, respectively.

Table 1. Estimates of the Smooth Coefficient Functions

smooth . . .
. Mean 10th percentile Median 90th percentile
Coefficient
B.(2) 0.141 0.123 0.137 0.164
Bk (2) 0.841 0.774 0.856 0.889
a(2) 1.177 -0.186 1.083 2.687

Table 2. Parameter Estimates of the Cobb-Douglas Function

. Parameter
Variables , Standard Errors
Estimates
Intercept 6.5087*** 0.30109
InL 0.28062* ** 0.01906
InK 0.55787* 0.01034
z -0.04321*** 0.01178
z 0.01479*** 0.00167
n 0.00133*** 0.00043
o-+o 1.26864* ** 0.21348
02
R 0.98806* ** 0.00211
o,+to

% We also estimate a translog production function, in which the additional terms of (InL)?, (InK)?,

and InL*InK areappended to (14).

The estimated average technical efficiency score and

R-square are close to those of the Cobb-Douglas function.
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Log-likelihood 1272.84

V. Conclusions

This paper is devoted to extending the SSCM of Li et a. (2002) from a
cross-sectional framework to the more popular and important panel data framework,
which allows for the presence of time-varying technical efficiency. Under the
maintained framework, we develop the likelihood function for the composed errors,
which cannot be directly estimated by the maximum likelihood due to the presence of
nonparametric and smooth coefficient functions. We instead propose a group of
estimation procedures adapting from Robinson (1988) and Fan et al. (1996), who
develop valid estimation approaches for a semiparametric model. A local least
squares method with a kernel weight function is suggested to estimate the smooth
coefficient functions. Monte Carlo simulations are used to confirm that our
proposed estimators of interest have the desirable property of consistency.

Due to the fact that the SSCM with error componentsis a quite flexible
specification appropriate for describing a genera production and/or cost regression
relationship with varying coefficients and panel data are getting more important for
applied researchers for the past two decades, our modeling offers an alternative and is
perhaps preferable to a parametric model.  Using international macroeconomic panel
datathe SSCM suggests that the marginal effects of labor and capital stock are
significantly affected by human capital nonlinearly. In addition, the slope of the
estimated S, (z) isincreasing after z= 6, while the shape of the estimated f, (2) is
concave after z=6. A parametric model failsto provide such information. The
empirical study appears to support that the SSCM is preferable to the traditional

Cobb-Douglas (translog) function in terms of the goodness of fit and the ability of



extracting valuable information from the data.
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