Reference: | Candell, G. L., & Drasgow, F. (1988). An iterative procedure for linking metrics and assessing item bias in item response theory. Applied Psychological Measurement, 12, 253-260. Casella, G., & Berger, R. L. (2002). Statistical Inference. the United State of America: Brooks/Cole Cengage Learning. Castillo, I., Schmidt-Hieber, B., & Vaart, A. V. D. (2015). Bayesian Linear Regression With Sparse Priors. The Annuals of Statistics, 43, 1986-2018. Chang, Y.-W., Hsu, H.-J., & Tsai, R.-C. (2021). An item response tree model with notall-distinct end nodes for non-response modelling. British Journal of Mathematical and Statistical Psychology, 74, 487-512. Chang, Y.-W., & Tu, J.-Y. (2022).Bayesian Estimation for an Item Response Tree Model for Nonresponse Modeling. Metrika. Published online. Chen, S. M., Bauer, D. J., Belzak, W. M., & Brandt, H. (2022). Advantages of Spike and Slab Priors for Detecting Differential Item Functioning Relative to other Bayesian Regularizing Priors and Frequentist Lasso. Structural Equation Modeling: A Multidiscriplinary Journal, 29, 122-139. Debeer, D., Janssen, R., & De Boeck, P. (2017). Modeling skipped and not-reached items using IRTrees. Journal of Educational Measurement, 54, 333–363. Gelman, A., Carlin, J. B., Rubin, D. B., & Stern, H. S. (2004). Bayesian data analysis. New York: Chapman and Hall. Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple Sequences. Statistical Science, 7, 457-511. George, E. I., & McCulloch, R. E. (1993). Variable Selection Via Gibbs Sampling. Journal of the American Statistical Association, 88, 881-889. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109. Ishwaran, H., & Rao, J. S. (2000). Baysian nonparametric MCMC for large variable selection problems. Unpublished manuscript. Ishwaran, H., & Rao, J. S. (2005). Spike and Slab Variable Selection: Frequentist and Bayesian Strategies. The Annals of Statistics, 33, 730-773. Lempers, F. B. (1971). Posterior probabilities of alternative linear models. Rotterdam University Press. Li, H.-H., & Stout, W. (1996). A New Procedure For Detection of Crossing DIF. Psychometrika, 61, 647-677. Lord, F. (1952). A theory of test scores. Psychometric Monograph. VA:Psychometric Corporation. Millsap, R. E. (2011). Statistical Approaches to Measurement Invariance. New York: Routledge. Mitchell, T. J., & Beauchamp, J. J. (1988). Bayesian Variable Selection in Linear Regression. Journal of the American Statistical Association, 32, 1023-1032 OECD (2014). PISA 2012 Technical Report. Park, D. G., & Lautenschlager, G. J. (1990). Improving IRT item bias detection with iterative linking and ability scale purification. Applied Psychological Measurement, 14, 163-173. Rockova, V., & George, E. (2018). The Spike-and-Slab LASSO. Journal of the American Statistical Association, 113, 431-444. Shealy, R., & Stout, W. (1993). A model-based standardization approach that separate true bias/DIF from group ability differences and detects test bias/DIF as well as item bias/DIF. Psychometrika, 58, 159-194. Stark, S., Chernyshenko, O. S., & Drasgow, F. (2006). Detecting differential item functioning with confirmatory factor analysis and item response theory: Toward a unified strategy. Journal of Applied Psychology, 91, 1292-1306. Xu, X., & Ghosh, M. (2015). Bayesian Variable Selection and Estimation for Group Lasso. Bayesian Analysis, 10, 909-936. |