政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/141007
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114205/145239 (79%)
造访人次 : 52399008      在线人数 : 674
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/141007


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/141007


    题名: 多群體試題反應理論樹狀模型之統計推論與應用
    Statistical Inference and Applications of a Multiple-group Item Response Theory Tree Model
    作者: 楊承鑫
    Yang, Cheng-Xin
    贡献者: 張育瑋
    Chang, Yu-Wei
    楊承鑫
    Yang, Cheng-Xin
    关键词: 貝氏估計
    差異試題功能
    試題反應樹狀模型
    遺失值
    spike-and-slab 先驗分佈
    Bayesian estimation
    Differential item functioning
    Item Response Theory tree model
    Missing data
    Spike-and-slab priors
    日期: 2022
    上传时间: 2022-08-01 17:15:40 (UTC+8)
    摘要: 本研究將文獻上的一個試題反應理論樹狀模型推廣至可以處理多群體的模型,可以同時考慮問卷或成就測驗中的群體差異與遺失值的效應。有別於大多數差異試題功能檢驗的研究需要先尋找定錨題再偵測具差異試題功能的題目,以在成就測驗中去掉這類的題目進而達到測驗的公平性,本研究透過貝氏估計搭配使用 spike-and-slab 先驗分佈 (Ishwaran 與 Rao 2005; Rockova 與 George 2018) 在特定參數,並使用吉氏採樣與 Metroplis-Hastings 演算法等計算技巧,可以同時完成差異試題功能的檢驗與模型的參數估計。本文亦將呈現對於提出模型建議的估計流程,並以模擬研究展現參數估計的不偏性與均方根誤差,及差異試題功能檢驗的成效。最後將本文提出的方法應用至一筆實際資料。
    In the current study, we extend an Item Response Theory tree model with four end nodes (TR4) in the literature to accommodate group difference. The extended model takes the group difference and missing data in questionnaire or achievement test into consideration. Different from most of present differential item functioning (DIF) studies where one has to select anchor items and then detect DIF items, we achieve DIF detection and parameter estimation simultaneously through applying some spike-and-slab priors (Ishwaran and Rao 2005; Rockova and George 2018) in full Bayesian inference. The suggested estimation procedure for the Multiple-group TR4 model is presented. Simulation studies are conducted to illustrate the validation of the proposed estimation procedure and the efficiency of DIF detection. The proposed method is further applied to a real data set for illustration.
    參考文獻: Candell, G. L., & Drasgow, F. (1988). An iterative procedure for linking metrics and
    assessing item bias in item response theory. Applied Psychological Measurement,
    12, 253-260.
    Casella, G., & Berger, R. L. (2002). Statistical Inference. the United State of America:
    Brooks/Cole Cengage Learning.
    Castillo, I., Schmidt-Hieber, B., & Vaart, A. V. D. (2015). Bayesian Linear Regression
    With Sparse Priors. The Annuals of Statistics, 43, 1986-2018.
    Chang, Y.-W., Hsu, H.-J., & Tsai, R.-C. (2021). An item response tree model with notall-distinct end nodes for non-response modelling. British Journal of Mathematical
    and Statistical Psychology, 74, 487-512.
    Chang, Y.-W., & Tu, J.-Y. (2022).Bayesian Estimation for an Item Response Tree Model
    for Nonresponse Modeling. Metrika. Published online.
    Chen, S. M., Bauer, D. J., Belzak, W. M., & Brandt, H. (2022). Advantages of Spike and
    Slab Priors for Detecting Differential Item Functioning Relative to other Bayesian
    Regularizing Priors and Frequentist Lasso. Structural Equation Modeling: A Multidiscriplinary Journal, 29, 122-139.
    Debeer, D., Janssen, R., & De Boeck, P. (2017). Modeling skipped and not-reached items
    using IRTrees. Journal of Educational Measurement, 54, 333–363.
    Gelman, A., Carlin, J. B., Rubin, D. B., & Stern, H. S. (2004). Bayesian data analysis. New York: Chapman and Hall.
    Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple
    Sequences. Statistical Science, 7, 457-511.
    George, E. I., & McCulloch, R. E. (1993). Variable Selection Via Gibbs Sampling. Journal of the American Statistical Association, 88, 881-889.
    Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
    applications. Biometrika, 57, 97–109.
    Ishwaran, H., & Rao, J. S. (2000). Baysian nonparametric MCMC for large variable
    selection problems. Unpublished manuscript.
    Ishwaran, H., & Rao, J. S. (2005). Spike and Slab Variable Selection: Frequentist and
    Bayesian Strategies. The Annals of Statistics, 33, 730-773.
    Lempers, F. B. (1971). Posterior probabilities of alternative linear models. Rotterdam
    University Press.
    Li, H.-H., & Stout, W. (1996). A New Procedure For Detection of Crossing DIF. Psychometrika, 61, 647-677.
    Lord, F. (1952). A theory of test scores. Psychometric Monograph. VA:Psychometric
    Corporation.
    Millsap, R. E. (2011). Statistical Approaches to Measurement Invariance. New York:
    Routledge.
    Mitchell, T. J., & Beauchamp, J. J. (1988). Bayesian Variable Selection in Linear Regression. Journal of the American Statistical Association, 32, 1023-1032
    OECD (2014). PISA 2012 Technical Report.
    Park, D. G., & Lautenschlager, G. J. (1990). Improving IRT item bias detection with
    iterative linking and ability scale purification. Applied Psychological Measurement,
    14, 163-173.
    Rockova, V., & George, E. (2018). The Spike-and-Slab LASSO. Journal of the American
    Statistical Association, 113, 431-444.
    Shealy, R., & Stout, W. (1993). A model-based standardization approach that separate
    true bias/DIF from group ability differences and detects test bias/DIF as well as item
    bias/DIF. Psychometrika, 58, 159-194.
    Stark, S., Chernyshenko, O. S., & Drasgow, F. (2006). Detecting differential item functioning with confirmatory factor analysis and item response theory: Toward a unified strategy. Journal of Applied Psychology, 91, 1292-1306.
    Xu, X., & Ghosh, M. (2015). Bayesian Variable Selection and Estimation for Group
    Lasso. Bayesian Analysis, 10, 909-936.
    描述: 碩士
    國立政治大學
    統計學系
    109354015
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0109354015
    数据类型: thesis
    DOI: 10.6814/NCCU202200971
    显示于类别:[統計學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    401501.pdf728KbAdobe PDF20检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈