政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/99532
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114012/145044 (79%)
造訪人次 : 52078184      線上人數 : 63
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/99532
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/99532


    題名: 貓狗影像辨識之特徵萃取
    Feature extraction in dogs and cats image recognition
    作者: 鍾立強
    Chung, Li Chiang
    貢獻者: 薛慧敏
    鍾立強
    Chung, Li Chiang
    關鍵詞: Asirra
    機器學習
    影像辨識
    方向梯度直方圖
    主成分分析
    日期: 2016
    上傳時間: 2016-08-02 15:53:42 (UTC+8)
    摘要: 近年來,很多要求高安全性的網站都使用扭曲變形的英文或數字字串作為辨識碼,以避免網站或系統受到大量暴力的攻擊。微軟公司則於2007年提出以貓狗影像的新辨識碼系統—Asirra。對於電腦而言,貓狗影像辨識較字串更為困難。本研究主要針對Asirra的影像資料試圖建構出貓狗影像自動辨識法,藉此來了解此辨識碼系統的有效性。已知影像包含大量雜訊,若使用原始資料則計算困難而且辨識效果差,所以萃取關鍵特徵為重要的研究課題。本文考慮方向梯度直方圖法 (Histograms of Oriented Gradients, HOG) 以及主成分分析 (Principal Components Analysis, PCA) 來篩選重要變數。我們將運用挑選出的特徵建立支持向量機 (Support Vector Machine, SVM) 分類器。在實證分析中,我們發現結合此兩種特徵萃取法,除了能夠大幅降低運算時間,也能得到良好的預測正確率。
    In recent years, many websites, which requires a high standard of security, use CAPTCHA to avoid mass and brutal attacks from hackers. The CAPTCHA considers the use of strings of twisted and deformed English letters or numbers as an identification code. In 2007, the company Microsoft proposed a new image-based recognition system-Assira, which uses dogs and cats images as an identification code. Dogs and cats image recognition is not more difficult than strings of letters or numbers recognition for human, but is more challenging for computers. In this paper, we aim to develop a classification method for images from Asirra. An image is represented by an enormous number of pixels. Only few pixels carry important feature information, most pixels are noise. The abundance of noise leads to computational inefficiency, and even worse, may results in inaccurate recognition. Therefore, in this problem feature extraction is an essential step before a classifier construction. We consider HOG (Histograms of Oriented Gradients) and PCA (Principal Components Analysis) to select important features, and use the features to construct a SVM (Support Vector Machine) classifier. In the real example, we find that combining the two feature detection methods can dramatically reduce computational time and have satisfactory predictive accuracy.
    參考文獻:  A. Rencher, (1995), “Methods of multivariate analysis,” New York : John Wiley.
     C.-C. Chang and C.-J. Lin, (2001), “LIBSVM: a library for support vector machines,” Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
     C. Cortes and V. Vapnik, (1995), “Support vector networks,” Machine Learning, 20, 273–297.
     D. L. Schwartz, (1995), “Reasoning about the referent of a picture versus reasoning about the picture as the referent: An effect of visual realism,” Memory and Cognition, 23, 709–722.
     D. G. Lowe., (2004), “Distinctive image features from scale-invariant keypoints,” IJCV, 60, 91-110.
     H. Bay, T. Tuytelaars, and L. Van Gool, (2006), “Surf: Speeded up robust features,” In European Conference on Computer Vision.
     I. Kim, J. H. Shim, and J. Yang, (2003), “Face detection,” Stanford University, Tech. Rep. , eE368 Final Project Report.
     I. T. Jolliffe, (1986), “Principal Component Analysis,” Springer-Verlag, New York.
     J. Elson, J. R. Douceur, J. Howell and J. Saul, (2007), “Asirra: a CAPTCHA that exploits interest-aligned manual image categorization,” Proceedings of the 14th ACM conference on Computer and communications security, Alexandria, Virginia, USA .
     L. von Ahn, M. Blum, N. J. Hopper and J. Langford, (2003), “CAPTCHA: using hard AI problems for security,” In Lecture notes in computer science, Berlin: Springer, 294–311.
     L.I. Smith, (2002), “A tutorial on Principal Components Analysis,” Cornell University, USA.
     N. Dalal, B. Triggs, (2005), “Histograms of Oriented Gradients for Human Detection,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2, 886-893.
     P. Domingos, (2012), “A few useful things to know about machine learning,” Commun. ACM. 55, 78–87.
     S.-Y. Huang, Y.-K. Lee, G. Bell, Z.-H. Ou, (2010), “An efficient segmentation algorithm for CAPTCHAs with line cluttering and character warping,” Multimedia Tools and Applications, 48, 267-289.
     S. Süsstrunk, R. Buckley and S. Swen, (1999), “Standard RGB color spaces,” Proc. IS T/SID 7th Color Imaging Conf., 127-134.
     T. Burghardt and J. Calic. , (2006), “Analysing animal behaviour in wildlife videos using face detection and tracking,” IEEE Proceedings - Vision, Image, and Signal Processing, 153, 305-312.
    描述: 碩士
    國立政治大學
    統計學系
    103354018
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0103354018
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    401801.pdf2146KbAdobe PDF21187檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋