English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52587821      Online Users : 812
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/98846
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/98846


    Title: 數據幾何特徵的機器學習
    A study of Data Geometry-based Learning
    Authors: 劉憲忠
    Liu, Hsien Chung
    Contributors: 周珮婷
    Chou, Pei Ting
    劉憲忠
    Liu, Hsien Chung
    Keywords: 機器學習
    幾何模式
    machine learning
    data-geometry
    Date: 2016
    Issue Date: 2016-07-11 16:54:50 (UTC+8)
    Abstract: 本研究著重於數據的幾何模式以了解資料變數間的關係,運用統計模型配適所得的係數加權於距離矩陣上,是否能有效提升正確率。本研究主要使用資料雲幾何樹及餘弦相似度方法與抽樣多數決投票法判別預測資料類別,另外並與階層式分群法、支持向量機、Hybrid法於三筆不同資料的分類結果比較,其中有兩筆為生物行為評估專案資料與美國威斯康辛州診斷乳癌資料,使用監督式學習驗證資料分類結果,另一筆月亮模擬資料,使用半監督式學習預測新資料分類結果。最後,各方法的優劣性與原因將被探討與總結,可知不同資料數據的幾何,確實需要嘗試不同公式與演算法來達到好的機器學習結果。
    The study focuses on the computed data-geometry based learning to discover the inter-dependence patterns among covariate vectors. In order to discover the patterns and improve classification accuracy, the distance functions are modified to better capture the geometry patterns and measure the association between variables. A comparison of the performance of my proposed learning rule to the other machine learning techniques will be summarized through three datasets. In the end, I demonstrated why the concept of geometry patterns is essential.
    Reference: Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine learning, 36(1-2),105 -139.
    Baldi, P., & Brunak, S. (2001). Bioinformatics: the machine learning approach. MIT press.
    Cortes, C.; Vapnik, V. (1995). Support-vector networks. Machine Learning 20 (3):273. doi:10.1007/BF00994018.
    Chou, E. P. (2015, July). Data Driven Geometry for Learning. In International Workshop on Machine Learning and Data Mining in Pattern Recognition (pp. 395 -402). Springer International Publishing.
    Chou, E. P., Hsieh, F., & Capitanio, J. (2013, December). Computed Data-Geometry Based Supervised and Semi-supervised Learning in High Dimensional Data. In Machine Learning and Applications (ICMLA), 2013 12th International Conference on (Vol. 1, pp. 277-282).
    Chang, Y. C. I. (2003). Boosting SVM classifiers with logistic regression. See www. stat. sinica. edu. tw/library/c_tec_rep/2003-03. pdf.
    Culp, M. (2011). spa: A Semi-Supervised R Package for Semi-Parametric Graph-Based Estimation. Journal of Statistical Software, 40(10), 1-29.
    Fushing, H., Wang, H., VanderWaal, K., McCowan, B., & Koehl, P. (2013). Multi -scale clustering by building a robust and self correcting ultrametric topology on data points. PloS one, 8(2), e56259.
    Grozavu, N., Bennani, Y., & Lebbah, M. (2009, June). From variable weighting to cluster characterization in topographic unsupervised learning. In Neural Networks, 2009. IJCNN 2009. International Joint Conference on (pp. 1005 -1010). IEEE.
    Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2).
    Tan, A. C., & Gilbert, D. (2003, January). An empirical comparison of supervised machine learning techniques in bioinformatics. In Proceedings of the First Asia -Pacific bioinformatics conference on Bioinformatics 2003-Volume 19 (pp. 219 -222). Australian Computer Society, Inc..
    Description: 碩士
    國立政治大學
    統計學系
    103354025
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0103354025
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    402501.pdf760KbAdobe PDF2468View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback