政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/98555
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114012/145044 (79%)
造访人次 : 52098711      在线人数 : 512
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/98555


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/98555


    题名: 異質性投資組合下的改良式重點取樣法
    Modified Importance Sampling for Heterogeneous Portfolio
    作者: 許文銘
    贡献者: 劉惠美
    許文銘
    关键词: 投資組合
    信用風險
    尾端機率
    蒙地卡羅法
    重點取樣法
    改良式重點取樣法
    變異數縮減
    Portfolio credit risk
    Tail probability
    Monte Carlo
    Importance sampling
    Modified importance sampling
    Variance reduction
    日期: 2016
    上传时间: 2016-07-01 14:57:13 (UTC+8)
    摘要: 衡量投資組合的稀有事件時,即使稀有事件違約的機率極低,但是卻隱含著高額資產違約時所帶來的重大損失,所以我們必須要精準地評估稀有事件的信用風險。本研究係在估計信用損失分配的尾端機率,模擬的模型包含同質模型與異質模型;然而蒙地卡羅法雖然在風險管理的計算上相當實用,但是估計機率極小的尾端機率時模擬不夠穩定,因此為增進模擬的效率,我們利用Glasserman and Li (Management Science, 51(11),2005)提出的重點取樣法,以及根據Chiang et al. (Joural of Derivatives, 15(2),2007)重點取樣法為基礎做延伸的改良式重點取樣法,兩種方法來對不同的投資組合做模擬,更是將改良式重點取樣法推廣至異質模型做討論,本文亦透過變異數縮減效果來衡量兩種方法的模擬效率。數值結果顯示,比起傳統的蒙地卡羅法,此兩種方法皆能達到變異數縮減,其中在同質模型下的改良式重點取樣法有很好的表現,模擬時間相當省時,而異質模型下的重點取樣法也具有良好的估計效率及模擬的穩定性。
    When measuring portfolio credit risk of rare-event, even though its default probabilities are low, it causes significant losses resulting from a large number of default. Therefore, we have to measure portfolio credit risk of rare-event accurately. In particular, our goal is estimating the tail of loss distribution. Models we simulate are including homogeneous models and heterogeneous models. However, Monte Carlo simulation is useful and widely used computational tool in risk management, but it is unstable especially estimating small tail probabilities. Hence, in order to improve the efficiency of simulation, we use importance sampling proposed by Glasserman and Li (Management Science, 51(11),2005) and modified importance sampling based on importance sampling which proposed by Chiang et al. (2007 Joural of Derivatives, 15(2),). Simulate different portfolios by these two of simulations. On top of that, we extend and discuss the modified importance sampling simulation to heterogeneous model. In this article, we measure efficiency of two simulations by variance reduction. Numerical results show that proposed methods are better than Monte Carlo and achieve variance reduction. In homogeneous model, modified importance sampling has excellent efficiency of estimating and saves time. In heterogeneous model, importance sampling also has great efficiency of estimating and stability.
    參考文獻: 1. Bassamboo, A.,Juneja, S.and Zeevi, A. (2008) , “Portfolio Credit Risk with 2. Extremal Dependence: Asymptotic Analysis and Efficient Simulation” , Operations Research, 56(3), 593-606
    2. Chiang, M.H., Yueh, M.L., and Hsieh, M.H. (2007), “An Efficient Algorithm for Basket Default Swap Valuation”, Joural of Derivatives, 15(2), 8-19
    3. Fuh, C.D., Teng, H.W., and Wang, R.H. (2013), “Efficient Importance Sampling for Rare Event Simulation with Applications”, Technical Report.
    4. Glasserman, P. (2004), “Tail Approximations for Portfolio Credit Risk”, Journal of Derivatives, 12, 24-42
    5. Glasserman, P. and Li, J. (2005), “Importance Sampling for Portfolio Credit Risk”, Management Science, 51(11), 1643-1656
    6. Han,C.H. ,Wu,C.T. (2010), “Efficient Importance Sampling for Estimating Lower Tail Probabilities under Gaussian and Student’s t Distributions”, Preprint. National Tsing-Hua University. 2010
    7. Li, D.X. (2000), “On Default Correlation: A Coupla Function Approach”, Journal of Fixed Income, 9, 43-54
    8. Nocedal, J. and M. Wright (1999), “Numerical Optimization”. New York: Springer-Verlag
    描述: 碩士
    國立政治大學
    統計學系
    103354010
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G1033540101
    数据类型: thesis
    显示于类别:[統計學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    010101.pdf2197KbAdobe PDF246检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈