政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/96302
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113873/144892 (79%)
造訪人次 : 51919257      線上人數 : 514
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/96302
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/96302


    題名: 小波理論在平滑函數估計上之探討
    作者: 蔡淑貞
    Tsai, Shu-Jane
    貢獻者: 張健邦
    Jang, Jiahn-Bang
    蔡淑貞
    Tsai, Shu-Jane
    日期: 1996
    上傳時間: 2016-05-10 18:56:18 (UTC+8)
    摘要: 近幾十年來,有許多學者都致力於平滑函數估計的研究並發展出多種的平滑函數估計方法。縱觀過去學者所提出的平滑函數估計法,皆有一共同特徵:即是設法消除函數觀測值所受之干擾,藉由干擾的降低以尋求未知平滑函數之估計值。
    在小波理論和應用的研究中,都顯示出小波轉換法具有優越地降低干擾訊息的特性,應用於降低未知平滑函數觀測值之干擾,並以其估計未知函數。最後並在模擬試驗中和其他平滑函數估計法相比較,以探討其優劣性。
    參考文獻: 一、中文部份
    [1] 鄭錦聰, MATLAB 入門引導(民國84 年) ,全華科技圖書公司。

    二、英文部分
    [2] Antoniadis, A., 1994, Smoothing Noise Data with Coiflets, Statistica Sinica, Vol. 4, No.2, 651-678.
    [3] Antoniadis, A. and Lavergne, c., 1995, Variance Function Estimation in Regression by Wavelet Methods, In Wavelets and Statistics ( Antoniadis, A. and Oppenheim, G. eds. ), Springer-Verlag Press,
    New York, 31-42 .
    [4] Abramovich, F. and Benjamini, Y., 1995, Thresholding of Wavelet Coefficients as Multiple Hypothesis Testing Procedure, In Wavelets and Statistics ( Antoniadis, A. and Oppenheim, G. eds. ), SpringerVerlag
    Press, New York, 5-14.
    [5] Abramovich, F. and Benjamini, Y., 1995, Thresholding of Wavelet Coefficients as Multiple Hypothesis Testing Procedure, In Wavelets and Statistics ( Antoniadis, A. and Oppenheim, G. eds. ), SpringerVerlag Press, New York, 5-14
    [6] Battle, G. and Federbush, P., Ondelettes and Phase Cell Cluster Expansions: A Vindication, Comm. Math. Phys. Vol. 109,417-419.
    [7] Benjamini, Y. and Hochberg, Y., 1995, Controlling the False Discovery Rate : A Practical and Powerful Approach to Multiple Testing, Journal Royal Statistical Society B, 57, 289-300.
    [8] Breiman L. and Peters, S., 1992, Comparing Automatic Smoothers, Internet. Statist. Rev., 60,271-290.
    [9] Buckheit, 1. B. and Donoho, D. L., 1995, Wavelab and Reproducible Research, In Wavelets and Statistics ( Antoniadis, A. and Oppenheim, G. eds. ), Springer-Verlag Press, New York, 55-81.
    [10] Chui, c. K., 1992, An Introduction to Wavelets, Academic Press, New York.
    [11] Cleveland, W. S., 1979, Robust Locally Weighted Regression and Smoothing Scatterplots, Journal of the American Statistical Association, 74, 829-836.
    [12] Daubechies, I., 1988, Orthonormal Bases of Compactly Supported Wavelets, Comm. Pure and Appl. Math., 41,909-996.
    [13] Daubechies, I., 1990, OrthonOImal Bases of Compactly Supported Wavelets 2, Variation on a Theme. Preprint, submitted to SlAM Journal Math. Anal.
    [14] Daubechies, I., 1992, Ten Lecture on Wavelet, SIAM, CBMS Series, April.
    [15] Daubechies, 1., Grossmann, A. and Meyer, Y., 1986, Painless Nonorthogonal Expansions, 1. Math. Phys., 27, 1271-1283.
    [16] Donoho, D. L. and Johnstone, 1. M., 1994(a), Adapting to Unknown Smoothness via Wavelet Sluinkage, 1. Amer. Stat. Stat. Assoc. ( to appear ). ftp://playfair.stanford.eduJpub/donoho/ausws.ps .Z
    [17] Donoho, D. L. and Johnstone, 1. M., 1994(b), Ideal Spatial Adaptation by Wavelet Shrinkage, Biometrika, 81, 425-455.
    ftp://playfair.stanford.eduJpub/donoho/isaws. ps.Z
    [18] Dooijes, E. H., 1993, Conjugate Quadrature Filters for Multiresolution Analysis and Synthesis, In Wavelets : An Elementary Treatment of Theory and Applications( Koomwinder, T. H. eds. ), World Scientific Press, USA, 129-138.
    [19] Gabor, D., 1946, Theory of Communication, Journal of the lEE., Vol.93,429-457.
    [20] Grossmann, A, and Morlet, 1., 1984, Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape, SlAM 1. Math., Vol. 15, No. 14,723-736.
    [21] Hastie, T. 1. and Tibshirani, R. 1., 1990, Generalized Additive Models, Chapman and Hall, London.
    [22] Kay,1.; 1994, Wavelets, Advance in Applied Statistics, 209-224
    [23] Mallat, S. G., 1989(a), A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEE Trans. Pattern Analysis and Machine intelligence., Vol. 11, No.7, July.
    [24] Mallat, S. G., 1989(b),Multiresolution Approximation and Wavelet OrthonoIIDal Bases of L2(R), Transactions of the American Mathmatical SOCiety, 315, 69-87.
    [25] MATLAB User`s Guide, 1992, Ver. 4, The Math Works Inc ..
    [26] MATLAB Reference Guide, 1992, Ver. 4, The Math Works Inc ..
    [27] Meyer, Y., 1985, Principe D`incertitude, Bases Hilbertiennes et Algebres D`operateurs, Bourbaki Seminar, No. 662.
    [28] Morlet, 1. and Grossmann, A., 1984, Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape, SlAM J. Math., Vol. 15, 723-736.
    [29] Nason, G. P., 1994, Wavelet Regression by Cross-Validation, Technical Report 447, Department of Statistics, Stanford University, Stanford.
    [30] Nason, G. P., 1995, Choice of the Threshold Parameter in Wavelet Function Estimation, In Wavelets and Statistics ( Antoniadis, A. and Oppenheim, G. eds. ), Springer-Verlag Press, New York, 261-280.
    [31] Nussbaum, M., 1985, Spline Smoothing in Regression Models and Asymptotic Efficiency in 4, Ann. Statist, 13, 984-997.
    [32] Press, W. H., 1991, Wavelet Transform, Technique Report by Numerical Recipes Software.
    [33] Rioul, O. and Vetterli, M., 1991, Wavelets and Signal Processing, IEEE SP Magazine, 14-38.
    [34] S-PLUS Guide to Statistical and Mathematical Analysis, 1993, Verso 3.2, StatSci, a division of MathSoft, Inc ..
    [35] Silverman, B. W., 1986, Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.
    [36] Stone, C. 1., 1982, Optimal Global Rates of Convergence for nonparametric Regression, Ann. Statist, 10, 1040-1053 .
    [37] Strang, G., 1989, Wavelets and Dilation Equations, SIAM Review, Vol. 31, 614-627.
    [38] Venables, W. N. and Ripley, B. D., 1994, Modern Applied Statistics with S-Plus, Springer-Verlag Press, New York.
    [39] Vidakovic, B., 1994, Nonlinear Wavelet Shrinkage with Bayes Rules and Bayes Factors, (submitted for publication).
    [40] Wang, Y., 1994, Function Estimation via Wavelets for Data with Long-Range Dependence, Technical Report, University of Missouri, Columbia.
    [41.] Zhang, Q., 1995, Wavelets and Regression Analysis, In Wavelets and Statistics ( Antoniadis, A. and Oppenheim, G. eds. ), Springer-Verlag Press, New York, 397-407.
    描述: 碩士
    國立政治大學
    統計學系
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G91NCCV0952012
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋