English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52550181      Online Users : 816
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/96299
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/96299


    Title: 模糊隨機變數在線性迴歸模式上的應用
    Fuzzy Random Variables and Its Applications in Fuzzy Regression Model
    Authors: 曾能芳
    Contributors: 吳柏林
    鄭宇庭

    曾能芳
    Keywords: 集合表徵
    模糊隨機變數
    模糊迴歸模式
    模糊期望值
    模糊分配函數
    模糊不偏性
    set representation
    fuzzy random variables
    fuzzy regression model
    fuzzy expected value
    fuzzy distribution function
    fuzzy unbiased
    Date: 2002
    Issue Date: 2016-05-10 18:56:11 (UTC+8)
    Abstract:   傳統迴歸分析是假設觀測值的不確定性來自於隨機現象,本文則應用模糊隨機變數概念於迴歸模式的架構,考慮將隨機現象和模糊認知並列研究。針對樣本模糊數(x<sub>i</sub>, Y<sub>i</sub>),我們進行模糊迴歸參數估計,並稱此為模糊迴歸模式分析。模糊迴歸參數估計大都採用線性規劃,求出適當區間,將觀測模糊數Y<sub>i</sub>的分佈範圍全部覆蓋。但是此結果並不能充分反映觀測樣本Y<sub>i</sub>的特性。本研究提出一套模糊迴歸參數的估計方法,其結果對觀測樣本的解釋將更為合理,且具有模糊不偏的特性。在分析過程中,我們亦提出一些模糊統計量如模糊期望值、模糊變異數、模糊中位數的定義,以增加對這些參數的模糊理解。最後在本文中也針對台灣景氣指標與經濟成長率作實務分析,說明模糊迴歸模式的適用性。
      Conventional study on the regression analysis is based on the conception that the uncertainty of observed data comes from the random property. However, in this paper we consider both of the random property and the fuzzy perception to construct the regression model by using of fuzzy random variables. For the fuzzy sample (x<sub>i</sub>,Y<sub>i</sub>), we will process the parameters estimation of the fuzzy regression, and we call this process as fuzzy regression analysis. The parameters estimation for a fuzzy regression model is generally derived by the linear programming scheme. But it`s result usually doesn`t sufficiently reflect the characteristics of the observed samples. Hence in this paper we propose an alternative technique for parameters estimation in constructing the fuzzy regression model. The result will describe the observed data better than the conventional method did, moreover it will have the fuzzy unbiased properties. For the purpose of fuzzy perception on the fuzzy random variables, we also give definitions for certain important fuzzy statistics such as fuzzy expected value, fuzzy variance and fuzzy median. Finally, we give an example about the Taiwan Business Cycle and the Taiwan Economic Growth Rate for illustration.
    Reference: Agee, W. S. and Turner, R. H. (1979). Application of Robust Regression to Trajectory data Reduction, In Robustness in Statistics (R. L. Launer and G. N. Wilkinson, eds). London: Academic Press.
    Chanas, S. & Florkiewicz, B. (1991). Deriving Expected Values from Probabilities of Fuzzy Subsets. European Journal of Operational Research, Vol. 50, p199-210.
    Hwang, C.M. & Yao, J.S. (1996). Independent Fuzzy Random Variables and their Application. Fuzzy Sets and Systems, Vol. 82, p335-350.
    Korner, R. (1997). On the Variance of Fuzzy Random Variables. Fuzzy Sets and Systems, Vol. 92, p83-93.
    Kruse, R. & Meyer, K. D. (1987). Statictics with Vague Data (Reidel, Dordrecht, Boston).
    Kwakernaak, H. (1978). Fuzzy Random Variables. Part I: Definitions and theorems. Information Sciences, vol 15, p1-15.
    Puri, M. L. (1986). Fuzzy Random Variables. Journal of Mathematical Analysis and Applications, Vol. 114, p409-422.
    Savic, D.A. & Pedrycz, W. (1991). Evaluation of Fuzzy Linear Regression Models. Fuzzy Set and Systems, Vol. 23, p51-63.
    Stojakovic, M. (1992). Fuzzy Conditional Expectation. Fuzzy Sets and Systems, Vol. 52, p53-60.
    Stojakovic, M. (1994) Fuzzy Random Variables, Expectation, and Martingales . Journal of Mathematical Analysis and Applications, Vol. 184, p594-606.
    Tanaka, H. Uejima, S. and Asai, K. (1980). Fuzzy Linear Regression Model. International Congress on Applied Systems Research and Cybernetics, Aculpoco, Mexico.
    Tanaka, H. Uejima, S. and Asai, K. (1982). Linear Regression Analysis with Fuzzy model. IEEE Trans. SystemsMan Cybernet, Vol. SMC12, p903-907.
    Tanaka, H. & Ishibuchi, H. (1993). An architecture of neural networks with interval weights and its application to fuzzy regression analysis. Fuzzy Sets and Systems, Vol. 57, p27-39.
    Toth, H. (1992). Probabilities andFuzzy Events: an Operational Approach. Fuzzy Sets and Systems, Vol. 48, p113-127.
    Wang, G. & Zhang, Y. (1992). The Theory of Fuzzy Stochastic Processes. Fuzzy Sets and Systems, Vol. 51, p161-178.
    Wu, B. and Tseng, N. F. (2002). A New Approach to Fuzzy Regression Models with Application to Business Cycle Analysis. Fuzzy Sets and Systems (will appear).
    Wu, H.C. (1999). Probability density functions of Fuzzy Random Variables. Fuzzy Sets and Systems, Vol. 105, p139-158.
    Wu, H.C. (2000). The Law of Large Numbers for Fuzzy Random Variables. Fuzzy Sets and Systems, Vol. 116, p245-262.
    Yang, M. & Ko, C. (1997). On cluster-wise fuzzy regression analysis. IEEE Trans. Systems Man Cybernet, Vol. 27, 1-13.
    Yun, K.K. (2000). The Strong Law of Large Numbers for Fuzzy Random Variables. Fuzzy Sets and Systems, Vol. 111, p319-323.
    Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, vol 8, p338-353.
    Zadeh, L. A. (1968). Probability Measures of Fuzzy Events. Journal of Mathematical Analysis and Applications, Vol. 23, p421-427.
    Description: 博士
    國立政治大學
    統計學系
    86354501
    Source URI: http://thesis.lib.nccu.edu.tw/record/#A2010000073
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2354View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback