English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51788860      Online Users : 202
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/95122
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/95122


    Title: 廣義Gamma分配在競爭風險上的分析
    An analysis on generalized Gamma distribution`s application on competing risk
    Authors: 陳嬿婷
    Contributors: 陳麗霞
    陳嬿婷
    Keywords: 競爭風險
    廣義Gamma分配
    Competing Risk
    Generalized Gamma Distribution
    Date: 2009
    Issue Date: 2016-05-09 15:11:35 (UTC+8)
    Abstract: 存活分析主要在研究事件的發生時間;傳統的存活分析並不考慮治癒者(或免疫者)的存在。若以失敗為事件,且造成失敗的可能原因不止一種,但它們不會同時發生,則這些失敗原因就是失敗事件的競爭風險。競爭風險可分為有參數的競爭風險與無母數的競爭風險。本文同時考慮了有治癒與有參數的混合廣義Gamma分配,並將預估計的位置參數與失敗機率有關的參數與解釋變數結合,代入Choi及Zhou(2002)提出的最大概似估計量的大樣本性質。並考慮在治癒情況下,利用電腦模擬來估計在型一設限及無訊息(non-informative)的隨機設限(random censoring)下之一個失敗原因與兩個失敗原因下的參數平均數與標準差。
    The purpose of survival analysis is aiming to analyze the timeline of events. The typically method of survival analysis don’t take account of the curer (or the immune). If the event is related to failure and there are more than one possible reason causing the failure but are not happening at the same time, we called the possible reasons a competing risk for failed occurrence. competing risk can be categorized as parameter and non-parameter. This research has considered the generalized gamma distribution over both cure and parameter aspects. In addition, it combines anticipated parameter with covariate which affected to the possibilities of failure. Follow by the previous data, it is then substituted by the large-sample property of the maximum likelihood estimator which is presented by Choi and Zhou in 2002. With considering the possibilities of cure, it uses computer modeling to investigate that under the condition of type-1 censoring and non-informatively random censoring, we will find out the parameter mean and standard error that is resulted by one and two reason causes failure.
    Reference: 1. Allgower, E.L. and Georg, K. (1990). Numerical Continuation Methods. Berlin: Springer-Verlag.
    2. Bartlett, M.S. and Kendall, D.G. (1946).The statistical analysis of variance-heterogeneity and the logarithmic transformation. Journal of the Royal Statistical Society 8, 128-138.
    3. Bader, B.W.(2005).Tensor–Krylov methods for solving large-scale systems of nonlinear equations. SIAM Journal of Numerical Analysis 43, 1321–1347.
    4. Berkson, J. and Elveback, L. (1960). Competing exponential risks with particular inference to the study of smoking lung cancer. Journal of the American Statistical Association 55, 415-428.
    5. Berkson, J. and Gage, P.R.(1952).Survival curve for cancer patients following treatment. Journal of the American Statistical Association 47, 501-515.
    6. Boag, J. W.(1949). Maximum likelihood estimates of the proportion of patients cured by caner therapy. Journal of the Royal statistical Society B 11, 15-45.
    7. Choi, K.C. and Zhou, X.(2002). Large-sample properties of mixture models with covariates for competing risks. Journal of Multivariate Analysis 82, 331-366.
    8. Cox, D. R. (1972). Regression Models and Life Tables (with Discussion). Journal of the Royal Statistical Society Series B 34, 187-220.
    9. Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 38, 1041-1046.
    10. Haybittle, J.L. (1965). A two-parameter model for the survival curve of treated cancer patients. Journal of the American Statistical Association 53, 16-26.
    11. Kuk, A. Y. C. and Chen, C. (1992). A mixture model combining logistic regression with proportional hazards regressions. Biometrika 79, 531-541.
    12. Larson M.G. and Dinse G.E. (1985). A mixture model for the regression analysis of competing risks data. Applied Statistics 34, 201-211.
    13. Lawless, J.F. (1980). Inference in the generalized gamma and log gamma distributions. Technometrics 22, 409-419.
    14. Maller, R.A. and Zhou, X. (2002).Analysis of parametric models for competing risks. Statistica Sinica 2, 725-750.
    15. Stay, E.W.(1962). A generalization of the gamma distribution. Annals of Mathematical Statistics 33, 1187-1192.
    16. Taylor, J. M. G. (1995). Semi-parametric estimation in failure time mixture models. Biometrics 51, 899-907.
    Description: 碩士
    國立政治大學
    統計學系
    96354022
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0096354022
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2354View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback