English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114393/145446 (79%)
Visitors : 53041829      Online Users : 812
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/94771
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/94771


    Title: 結構型商品之評價與分析-附有雙重界限選擇權之股權及匯率連動票券
    Authors: 許展維
    Hsu, Chan Wei
    Contributors: 陳松男
    許展維
    Hsu, Chan Wei
    Keywords: 雙重界限
    觸及失效
    有限差分法
    蒙地卡羅模擬
    Double Barrier
    Knock Out
    Finite Difference Method
    Monte Carlo Simulation
    Date: 2009
    Issue Date: 2016-05-09 11:50:23 (UTC+8)
    Abstract:   本文的主要內容為評價JPMorgan Chase & Co.(美國摩根大通銀行)及UBS(瑞士銀行)所發行的兩檔結構型票券,共同的特色是票券為保本型且不付息,報酬條款中附有雙重界限觸及失效選擇權,其價值對於標的資產的波動程度相當敏感。一旦標的資產價格觸及任一界限,具有額外收益的選擇權將失效,投資人僅能拿回原始投資本金,相當於損失了原本可能獲得的無風險利息。
      針對雙重界限觸及失效選擇權,我們使用顯式、隱式以及Crank-Nicolson三種有限差分法來進行評價,並比較蒙地卡羅模擬和封閉解的結果,藉以了解各種方法的準確性及效率。接著我們求算避險參數Greeks,分析發行商所面臨的風險。同時根據市場未來的情況,分析投資人的預期收益,進而了解這種商品在市場上廣為流通的原因,以及此類新奇結構型商品對於風險的重分配方式,如何締造買方賣方雙贏的局面。
    Reference: 中文部分:
    1.陳松男(民94):金融工程學-金融商品創新與選擇權理論,新陸書局
    2.陳松男(民93):結構型金融商品之設計及創新,新陸書局
    3.陳松男(民94):結構型金融商品之設計及創新(二),新陸書局
    4.陳威光(民91):選擇權-理論‧實務與應用,智勝出版社
    5.謝嫚琦(民93):結構型債券之評價與分析,國立政治大學金融研究所碩士論文
    6.李映瑾(民94):結構型商品之評價與分析-每日計息雙區間連動及匯率連動債券,國立政治大學金融研究所碩士論文

    英文部分:
    1.Boyle, P.P. (1998): “An Explicit Finite Difference Approach to The Pricing of Barrier Options”, Applied Mathematical Finance, 5 (1998), pp. 17-43
    2.Boyle, P.P. and Lau S.H. (1994): “Bumping Up Against The Barrier with The Binomial Method”, Journal of Derivatives, 1 (1994), pp. 6-14
    3.Boyle, P.P. (1977): “Options: A Monte Carlo Approach”, Journal of Financial Economics, 4 (1977), pp. 323-338
    4.Brandimarte, P. (2002): Numerical Methods in Finance: A MATLAB-Based Introduction, John Wiley & Sons, Inc. , New York
    5.Broadie, M., Glasserman, P. and Kou, S. (1997): “A Continuity Correction for Discrete Barrier Options”, Mathematical Finance, 7 (1997), pp. 325-349
    6.Cao, G. and MacLeod, R. (2005): “Pricing Exotic Barrier Options with Finite Differences”, SSRN Working Paper Series
    7.Carr, P., Ellis, K. and Gupta, V. (1998): “Static Hedging of Exotic Options”, The Journal of Finance, 53, No.3 (Jun., 1998), pp. 1165-1190
    8.Cheuk, T.H.F. and Vorst, T.C.F. (1994): “Real-Life Barrier Options”, Unpublished manuscript, Erasmus University, Rotterdam, Netherlands
    9.Cox, J.C., Ross, S.A. and Rubinstein, M. (1979): “Option Pricing: A Simplified Approach”, Journal of Financial Economics, 7 (1979), pp. 229-264
    10.Espen Gaardder, H. (1998): The Complete Guide to Option Pricing Formulas, McGraw-Hill, New York
    11.Fries, P.C. (2007): Mathematical Finance: Theory, Modeling, Implementation, John Wiley & Sons, Inc. , New York
    12.German, H. and Yor, M. (1996): ”Pricing and Hedging Double Barrier Options: A Probabilistic Approach”, Mathematical Finance, 6 (1996), pp.365-378
    13.Glasserman, P. (2003): Monte Carlo Methods in Financial Engineering (Stochastic Modelling and Applied Probability), Springer, New York
    14.Kunitomo, N. and Ikeda, M. (1992): “Pricing Options with Curved Boundaries”, Mathematical Finance, 2 (1992), pp. 275-298
    15.Li, Anlong (1999): “The Pricing of Double Barrier Options and Their Variations”, Advances in Futures and Options Research, 10 (1999), pp. 17-41
    16.Merton, R.C. (1973): “Theory of Rational Option Pricing”, Bell Journal of Economics and Management Science, 4 (1973), pp. 141-183
    17.Reiner, E. and Rubinstein, M. (1991): “Breaking Down the Barriers”, Risk Magazine, 4 (1991), pp. 28-35
    18.Ritchken, P. (1995): “On Pricing Barrier Options”, Journal of Derivatives, 3 (1995), pp. 19-28
    19.Ritchken, P. and Salkin, H. (1983): “Safety First Selection Techniques for Option Spread”, Journal of Portfolio Management, 9, pp. 61-67
    20.Wilmott, P., Dewynne, J. and Howison, S. (1993): Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford
    21.Wystup, U. (2007): FX Options and Structured Products, John Wiley & Sons, Inc., New York
    22.Zvan, R., Forsyth, P. and Vertzal, K. (1998): “Robust Numerical Methods for PDE Models of Asian Options”, Journal of Computational Finance, 1(Winter) (1998), pp. 39-78
    Description: 碩士
    國立政治大學
    金融研究所
    96352028
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0963520281
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2263View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback