English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51632494      Online Users : 574
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/94726
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/94726


    Title: 聯合系統與獨特風險下之信用違約交換評價
    Joint pricing of CDS spreads with Idiosyncratic and systematic risks
    Authors: 王聖文
    Wang, Sheng-Wen
    Contributors: 翁久幸
    廖四郎

    Weng, Ruby Chiu-Hsing
    Liao, Szu-Lang

    王聖文
    Wang, Sheng-Wen
    Keywords: 信用違約交換
    系統風險
    獨特性風險
    狀態空間模型
    Variance Gamma過程
    credit default swaps
    systematic risk
    idiosyncratic risk
    state-space model
    Variance Gamma process
    Date: 2009
    Issue Date: 2016-05-09 11:42:12 (UTC+8)
    Abstract: 本研究透過聯合系統與獨特風險綜合評估違約的強度,假設市場上經濟變數或資訊影響系統之違約強度,然若直接考慮所有經濟變數到模型中將可能會有共線性或維度過高之疑慮,因此透過狀態空間模型來設定狀態變數以及經濟變數之關係並將萃取三大狀態變數分別用以描述市場實質活動面、通貨膨脹以及信用環境。另外,將透過結構式模型來計算獨特性風險大小,當個別潛在的變數低於一定數值將導致個別的違約事件發生。而因布朗運動可能無法描述或校準市場上違約之鋒態以及偏態,將進一步考慮Variance Gamma過程用以更準確描述真實違約狀況。最後透過結合以上兩個風險綜合評估下,考慮一個聯合違約模型來評價信用違約交換之信用價差。
    Systematic and idiosyncratic risks are supposed to jointly trigger the default events. This paper identifies three fundamental risks to capture the systematic movement: real activity, inflation, and credit environment. Since most macroeconomic variables fluctuate together, the state-space model is imposed to extract the three variables from macroeconomic data series. In the idiosyncratic part, the structural model is applied. That is, idiosyncratic default
    is triggered by the crossing of a barrier. For improvement of the underlying lognormal distribution, we assume the process for the potential variable of the firm follows a Variance Gamma process, sufficient dimensions of which can fit the skewed and leptokurtic distributions. Under the specific setting of combinations of the two risks (the so-called joint default model), we price credit default swaps.
    Reference: Ang, A. and M. Piazzesi. A no-arbitrage vector autoregression of term structure dynamics
    with macroeconomic and latent variables. Journal of Monetary Economics, 50:745–787,
    2003.
    Black, F. and J. Cox. Valuing corporate securities: some effects on bonds indenture provisions.
    Journal of Finance, 31:31–367, 1976.
    Bodie, Z., A. Kane, and A. Marcus. Essentials of Investments. McGraw Hill, 2005.
    Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice with Smile, Inflation
    and Credit. Springer, 2006.
    Cariboni, J. and W. Schoutens. Pricing credit default swaps under Lévy models. Journal
    of Computational Finance, 10:1–21, 2007.
    Carlin, B. P., N. G. Polson, and D. S. Stoffer. A Monte Carlo approach to nonnormal
    and nonlinear state-space modeling. Journal of the American Statistical Association, 87:
    493–500, 1992.
    Carter, C. K. and P. Kohn. On Gibbs sampling for state space models. Biometrika, 81:
    541–553, 1994.
    Cont, R. and P. Tankov. Financial Modelling With Jump Processes. Chapman & Hall/CRC,
    2003.
    Das, S., D. Duffie, N. Kapadia, and L. Saita. Common failings: How corporate defaults are
    correlated. The Journal of Finance, 62:93–117, 2007.
    Davis, M. and V. Lo. Infectious defaults. Quantitative Finance, 1:382–387, 2001.
    Duffie, D. and K. J. Singleton. Modeling term structures of defaultable bonds. Review of
    Finance Studies, 12:687–720, 1999.
    Duffie, D., S. Leandro, and K. Wang. Multi-period corporate default prediction with
    stochastic covariates. Working Paper, Stanford University.
    Fu, M. C. Variance-gamma and Monte Carlo. Working Paper.
    Gelman, A., J. B. Carlin, H. S. Stern, D. B. Rubin, and A. Gelman. Bayesian Data Analysis.
    Chapman & Hall/CRC, 2003.
    Geman, S. and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian
    restoration of images. IEEE Transactions in Pattern Analysis and Machine Intelligence,
    6:721–741, 1984.
    Hastings, W. Monte Carlo sampling methods using Markov chains and their applications.
    Biometrika, 57:97–109, 1970.
    Jorion, P. Value at Risk. McGraw Hill, 2007.
    Kalman, R. E. A new approach to linear filtering and prediction problems. Transactions of
    the ASME-Journal of Basic Engineering, 82 (Series D):35–45, 1960.
    Kim, C. J. and C. R. Nelson. State-Space Models with Regime Switching: Classical and
    Gibbs-Sampling Approaches with Applications. The MIT Press, 1999.
    Kou, S. G. A jump diffusion model for option pricing. Management Science, 48:
    1086a˛V1101, 2002.
    Lu, B. and L.Wu. Systematic movements in macroeconomic release and the term structure
    of interest rates. Working paper.
    Madan, D. B. andW. Schoutens. Break on through to the single side. In Statistics Technical
    Report, 2007.
    Madan, D. B., P. Carr, and E. C. Chang. The variance gamma process and option pricing.
    European Finance Review, 2:79–105, 1998.
    Merton, R. On the pricing of corporate debt: the risk structure of interest rates. Journal of
    Finance, 29:449–470, 1974.
    Merton, R. C. Option pricing when underlying stock returns are discontinuous. Journal of
    Financial Economics, 3:125–144, 1976.
    Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation
    of state calculations by fast computing machines. The Journal of Chemical Physics, 23:
    1083–1953, 1953.
    Ross, S. M. Introduction to Probability Models. Academic Press, 2006.
    Ross, S. A. The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13:
    341–360, 1976.
    Schoutens, W. Lévy Process in Finance: Pricing Financial Derivatives. Wiley, 2003.
    Sharp, W. F. A simplified model for portfolio analysis. Management Science, 9:277–293,
    1963.
    Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. Springer, 2008.
    Vasicek, O. An equilibrium characterization of the term structure. Journal of Financial
    Economics, 5:177–188, 1977.
    Welch, G. and G. Bishop. An introduction to the Kalman filter. Technical report, TR
    95-041, University of North Carolina at Chapel Hill, 2006.
    Wu, L. and F. X. Zhang. A no-arbitrage analysis of macroeconomic determinants of the
    credit spread term structure. Management Science, 54:1160–1175, 2008.
    Description: 碩士
    國立政治大學
    統計學系
    95354010
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0953540102
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2271View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback