政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/94410
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113974/145000 (79%)
Visitors : 52011943      Online Users : 498
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/94410


    Title: 誤差項服從偏斜常態分配下信用風險之尾端機率估計
    Authors: 廖逸群
    Contributors: 劉惠美
    廖逸群
    Keywords: 信用風險
    偏斜常態
    同質近似法
    尾端機率
    Date: 2007
    Issue Date: 2016-05-06 16:35:52 (UTC+8)
    Abstract: 信用風險造成的損失是銀行所承擔最大的風險來源之一,高估或低估損失分配對金融機構都是不利的,金融機構需要找出近似效果最好的估計方法來近似其真實損失分配。本研究延伸Glasserman(2004)的同質近似法,估計損失分配之尾端機率,即發生重大損失的機率,然而此模型考慮系統性風險因素和非系統性風險因素皆服從常態分配,假設並不一定符合現實,可能會錯估重大損失的機率,所以本研究假設系統性風險因素為常態分配,非系統性風險因素為標準化偏斜常態分配下,來推導近似損失分配。藉由三種特性不同的投資組合,計算其損失分配之尾端機率,再利用蒙地卡羅法模擬出真實機率以做比較。
    本研究改變損失起始值、偏斜常態分配的參數值和系統性風險因素個數,觀察近似效果的變化。結果發現,改變損失起始值和系統性風險因素個數對近似效果的變化與投資組合特性以及近似分配假設為何有關。而偏斜常態分配的參數在夠大的情形下,參數改變對近似效果並無明顯影響。藉由改變債務人數目,可以知道使用同質近似法所得的近似效果是穩定的。使用同質近似法時,誤差項的分配在錯誤假設下,會得到不好的近似效果。所以,收集足夠的資訊,正確的知道衝擊產業的系統風險程度和系統風險數目,且清楚知道個別債務人的邊際損失機率分配時,便可使用同質近似法對信用風險的尾端機率作出正確的估算。
    Reference: 中文部份
    1. 吳秉昭,2005,信用損失分配之尾端機率估計-大樣本投資組合與區型塊投資組合,國立政治大學統計研究所碩士論文。
    2. 楊立民,2005,信用風險尾巴機率之研究,國立政治大學統計研究所碩士論文。
    3. 賴柏志,2003,「關聯結構在信用風險管理之運用」,金融聯合徵信中心,
    http://www.jcic.org.tw/。
    4. 廖四郎,李福慶,2005,「擔保債權憑證之評價-Copula分析法」,台灣金融財務季刊第六輯第二期。
    英文部份
    [1] Azzalini, A. & Capitanio, A. (1999). “Statistical applications of the multivariate skew-normal distribution”, J.R Stat. Soc., ser. B, vol.61, 579-602.
    [2] Azzalini, A. (1985). “A class of distributions which includes the normal ones”, Scand. J. Statist., vol.12, 171-178.
    [3 ] Azzalini, A. & Dalla Valle, A. (1996). “The multivariate skew-normal distribution”, Biometrika, vol.83, 715-726.
    [4] Azzalini, A. (2005). “The skew-normal distribution and related multivariate families”, Journal of Statistics , vol.32, 159-188.
    [5] Black, F. and J. Cox (1976). “Valuing Corporate Securities: Some Effects of Bond Indenture Provisions”, Journal of Finance, vol.31, 351-367.
    [6] Duffie, D. J. and K. J. Singleton (1998). “Modeling term structures of defaultable bonds”, Review of Financial Studies, vol.12, 687-720.
    [7] Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer, New York.
    [8] Glasserman, P. (2004). “Tail approximations for portfolio credit risk”, The Journal of Derivatives, vol. 4, 24-43.
    [9] Glasserman, P. and J. Li (2005). “Importance Sampling for Portfolio Credit Risk”, Management Science, vol.51, 1643-1656.
    [10] Glasserman, P. (2005). “Measuring Marginal Risk Contributions in Credit Portfolios”, Journal of Computational Finance, vol. 9, 1-41.
    [11] Hull, J. and A. White (1998). “Value at Risk When Daily Changes in Market Variables Are Not Normally Distribution”, Journal of Derivative, vol.5, 9-19.
    [12] Jarrow, R. and S. Turnbull (1995). “Pricing Derivatives on Financial Securities subject to Credit Risk”, Journal of Finance, vol.50, 53-85.
    [13] Jarrow, R. and F. Yu (2001). “Counterparty risk and the pricing of defaultable securities”, The Journal of Finance, vol.56, 1765- 1799.
    [14] Kalkbrenner, M., H. Lotter, and L. Overbeck (2004). “Sensible and efficient capital allocation for credit portfolios”, Risk, vol.17, 19-24.
    [15] Li, D. (2000). “On default correlation: A copula function approach”, The Journal
    of Fixed Income, vol.9, 43-54.
    [16] Lucas, A., P. Klaassen, P. Spreij, and S. Straetmans. (2001). “An analytic approach to credit risk of large corporate bond and loan portfolios”, Journal of Banking & Finance, vol.25, 1635-1664.
    [17] Merton, R. (1974). “On the pricing of corporate debt: The risk structure of interest rates”, Journal of Finance, vol.29, 449-470.
    [18] Nocedal, J., and M. Wright. (1999). Numerical Optimization. Springer-Verlag, New York.
    [19] Shonbucher, P. (2001). “Factor models: Portfolio Credit Risk When Defaults Are Correlated”, Journal of Risk Finance ,vol.3 , 45-56
    [20] Sklar, A. (1959). “Fonctions de répartition à n dimensions et leur marges”, Publ. Int. Stat Univ., Paris, vol.8, 229–231.
    Description: 碩士
    國立政治大學
    統計學系
    94354001
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0094354001
    Data Type: thesis
    Appears in Collections:[Department of Statistics] Theses

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2252View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback