English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51820180      Online Users : 582
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/91721
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/91721


    Title: 排程的隨機動態規劃模型及其在管理上的應用
    Authors: 黃欣伸
    Contributors: 余千智
    黃欣伸
    Date: 1986
    Issue Date: 2016-05-05 15:55:14 (UTC+8)
    Abstract: 提要

      排程問題乃在決定一工作站中一組工作之進行順序,爲一序列性決策問題,由於模型中對工作之進行狀態可以0和1表示個別工作之操作情形,因此本研究使用二元結構表示法表示排程模型之狀態,並應用於動態規劃方法的解題過程中以求得最佳序列。假設站中每一工作Ji有已知之到期日,而其完成日爲所有早於工作Ji完成之工作的操作時間總和加上完成工作Ji所需之操作時間。若完成日晚於到期日,必需支付違約金以作爲懲罰,而計算違約金之函數可爲任意函數,因此模型之最佳解乃在使最終支付之總違約金爲最少之工作順序。同時若由於技術或工作性質等因素,使得工作之進行有一定之順序限制時,二元結構表示法仍可以較節省之電腦記憶體求得符合優先順序限制之最佳工作順序,並可於允許改變工作之優先順序限制時,利用原模型之個別狀態最佳解求得新模型之最佳解。此外尚可將模型一般化,以允許工作之操作時間爲單變量或多變量之隨機變數,而求得該隨機模型之最佳工作順序。
    Reference: 參考書目
    1. Baker, K.R., and Schrage, L.E. “Finding an Optimal Sequence by Dynamic Programming: An Extension to Precedence Related Tasks”, Operations Research, 26, 1, 111-120, (1978a)
    2. Baker, K.R., and Schrage, L.E. “Dynamic Programming Solution of Sequening Problems with Precedence Constraints”, Operations Research, 26, 3, 444-449 (1978b)
    3. Bellman, R. Dynamic Programming, Princeton University Press, Princeton N.J. (1957)
    4. Butcher, W.S., “Stochastic Dynamic Programming for Optimal Resources Operations”, Water Resources Bulletin, 7, 1, 115-123 (1971)
    5. Denardo, E.V., Dynamic Programming: Models and Applications, Pentice-Hall, Englewood Cliffs, N.J. (1982)
    6. Gal, Shmuel, “Optiomal Management of a Multireservoir water Supply System”, Water Resources Research, 15, 4, 737-749 (1973)
    7. Garey, M.R., “Optimal Binany Identification Procedures” SIAM Journal on Applied Mathematic, 23, 2, 173-186, (1972)
    8. Gourlay, A.R., and Watson, G.A., Computational Methods for Matrix Eigenproblems, John Wiley & Sons (1973)
    9. Graybill, F.A., Theory and Application of the Linear Model, Duxbury Press, North Scituate, Massachusetts, (1976)
    10. Held, M., Karp, R.M., and Shareshian, R., “Assembly-line Balancing: Dynamic Programming with Precedence Constraints”, Operations Research, 11, 3, 442-459 (1963)
    11. Johnson, R.A., and Wichern, D.W., “Applied Multivariate Statistical Analysis, Prentice-Hall, Englewood Cliffs, N.J. (1982)
    12. Kennedy, Jr. W. J., and Gentle, J.E., Statistical Computing, Marcel Dekker, New York (1980)
    13. Maidment, D.R., and Chow, V.T., “Stochastic State Variable Dynamic Programming for Reservoir System Analysis”, water Resources Research, 17, 6, 1578-1584, (1981)
    14. McNaughton, R., “Scheduling with Deadlines and Loss Fuactions”, Management Science, 6, 1, 1-12, (1959)
    15. Mitten, L.G., “Precedence Order Dynamic Programming” Management Science, 24, 1, 43-46, (1974)
    16. Nash, R., “Controlled Jump Processes Models for Stochastic Scheduling”, International Journal of Control, 29, 6, 1011-1025, (1979)
    17. Ross, S., Introduction to Stochastic Dynamic Programming, Academic Present, N. Y. (1983)
    18. Schild, A., and Fredman, I.J., “On Scheduling Tasks with Associated Linear Loss Functions”, Management Science, 7, 3, 280-285 (1961)
    19. Schild, A., and Fredman, I.J., “Scheduling Tasks with deadlines and Non-Lineer Loss Functions”, Management Science, 9, 1, 73-81 (1962)
    20. Shwirmer, Joel. “On The N-Job. One-Machine Sequenice-Independent Schednling Problem with Tardness Penalties: A Branch-Found Solution.”, Management Science, 18, 6, B301-B303 (1972).
    21. Steiner, G., “Single Machine Scheduling with Precedence Constraints of Dimension 2”, Mathematics of Opuations Research, 9, 2, 248-259. (1984)
    22. Takeuchi, K., and Moreau, D.H., “Optimal Control of Multiunit Inter-basin Water Resource Systems”, Water Resources Research, 10, 3, 407-414 (1974)
    23. Yu, C.C. Three Tree Structures For Data Processing in Dynamic Programming Computation, Master Dissertation, U.T. Austin, (1983)
    24. Yu, C.C. The Optimization of Stochastic Multiperiod Systems By an Implicit Dynamic Programming Approoch Ph. D. Dissertation U. T. Austin, (1985)
    Description: 碩士
    國立政治大學
    統計學系
    Source URI: http://thesis.lib.nccu.edu.tw/record/#B2002006689
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2246View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback