Reference: | 參考文獻
1. Anderson, J. A. [1972]: “Separate sample logistic discrimination.” Biometrika, 59, 19-36.
2. Anderson, T. W. [1952]: An Introduction to Multivariate Statistical Methods, New York: Wiley.
3. Bahadur, R. R. [1961]: “A representation of the joint distribution of response to n dichotomous items.” In Studies in Item Analysis and Prediction, H. Solomon (Ed.), Palo Alto, Calif.: Stanford Univ. Press, pp. 158-168..
4. Dillon, W. R. and M. Goldstein, [1978]: “On the performance of some multinomial classification rules,” J. Am. Stat. Assoc., 78, no. 362.
5. Gilbert, E. S. [1968]: “On discrimination using qualitative variables,” J. Am. Stat. Assoc., 63, 1399.
6. Glick, N. [1972]: “Sample – based classification procedures derived from density estimators,” J. Am. Stat. Assoc., 67, 166-122.
7. Glick, N. [1973]: “Sample – based mutinomial classification,” Biometrics, 29, 241-256.
8. Goldstein, M. [1975]: “Comparison of some density estimate classification procedures,” J. Am. Stat. Assoc., 70, 666-669.
9. Goldstein, M. and W. R. Dillon, [1977]: “A stepwise discrete variable selection procedure,” Commun. Stat., Theory and Material, 6, 1423-36.
10. Glodstein, M. and W. R. Dillon, [1978]: Discrete Discriminant Analysis, John Wiley & Sons, Inc., New York.
11. Goldstein, M. and M. Rabinowitz, [1975]: “Selection of variates for the two-group multinomial classification problem,” J. Am. Stat. Assoc., 70, 776-781.
12. Haberman, S. J. [1974]: The analysis of frequency data, The University of Chicago Press, Ltd., London.
13. Hoel, P. G. and R. P. Peterson [1949]: “A solution to the problem of optimum classification,” Ann. Math. Stat., 20, 433-438.
14. Hills, M. [1967]: “Discrimination and allocation with discrete data,” J. Roy. Stat. Soc., C16, 237-250.
15. Johnson, R. A. and Wichern, D. W. [1986]: Applied Multivariate Statistical Analysis, Prentice- Hall, Inc., Englewood Cliffs, New Jersey.
16. Kennedy, Jr. W. J. and Gentle, J. E. [1980]: Statistical Computing, 華泰書局, pp192-200.
17. Kullback, S. [1959]: Information Theory and Statistics, New York: Wiley.
18. Lanchin, P. A. [1975]: Discriminant Analysis, Hafner Press, New York.
19. Lachin, J. M. [1973]: “On a stepwise procedure for two populations Bayes decision rules using discrete variables,” Biometrics, 29, 551-564.
20. Martin, D. C. and R. A. Bradley, [1972]: “Probability models estimation and classification for multivariate dichotomous populations,” Biometrics, 28, 203-222.
21. Matusita, K. [1955]: “Decision rules based on the distance for problems of fit, two samples and estimation,” Ann. Math. Stat. 26, 631-640.
22. Moore, D. H., II [1973]: “Evaluation of five discrimination procedures for binary variables,” J. Am. Stat. Assoc., 68-339-404.
23. SAS USER’S GUIDE: Statistics [1982], SAS INSTITUTE INC. CARY, NORTH CAROLINA.
24. Solomon, H. (Ed.) [1961]: Studies in Item Analysis & Prediction, Palo Alto, Calif.: Stanford University Press.
25. Weiner, J. and O. J. Dunn, [1966]: “Elimination of variates in linear discrimination problem,” Biometrics, 22, 268.
26. Welch, B. L. [1939]: “Note on discriminant functions,” Biometrika, 31, 218-220. 參考文獻
1. Anderson, J. A. [1972]: “Separate sample logistic discrimination.” Biometrika, 59, 19-36.
2. Anderson, T. W. [1952]: An Introduction to Multivariate Statistical Methods, New York: Wiley.
3. Bahadur, R. R. [1961]: “A representation of the joint distribution of response to n dichotomous items.” In Studies in Item Analysis and Prediction, H. Solomon (Ed.), Palo Alto, Calif.: Stanford Univ. Press, pp. 158-168..
4. Dillon, W. R. and M. Goldstein, [1978]: “On the performance of some multinomial classification rules,” J. Am. Stat. Assoc., 78, no. 362.
5. Gilbert, E. S. [1968]: “On discrimination using qualitative variables,” J. Am. Stat. Assoc., 63, 1399.
6. Glick, N. [1972]: “Sample – based classification procedures derived from density estimators,” J. Am. Stat. Assoc., 67, 166-122.
7. Glick, N. [1973]: “Sample – based mutinomial classification,” Biometrics, 29, 241-256.
8. Goldstein, M. [1975]: “Comparison of some density estimate classification procedures,” J. Am. Stat. Assoc., 70, 666-669.
9. Goldstein, M. and W. R. Dillon, [1977]: “A stepwise discrete variable selection procedure,” Commun. Stat., Theory and Material, 6, 1423-36.
10. Glodstein, M. and W. R. Dillon, [1978]: Discrete Discriminant Analysis, John Wiley & Sons, Inc., New York.
11. Goldstein, M. and M. Rabinowitz, [1975]: “Selection of variates for the two-group multinomial classification problem,” J. Am. Stat. Assoc., 70, 776-781.
12. Haberman, S. J. [1974]: The analysis of frequency data, The University of Chicago Press, Ltd., London.
13. Hoel, P. G. and R. P. Peterson [1949]: “A solution to the problem of optimum classification,” Ann. Math. Stat., 20, 433-438.
14. Hills, M. [1967]: “Discrimination and allocation with discrete data,” J. Roy. Stat. Soc., C16, 237-250.
15. Johnson, R. A. and Wichern, D. W. [1986]: Applied Multivariate Statistical Analysis, Prentice- Hall, Inc., Englewood Cliffs, New Jersey.
16. Kennedy, Jr. W. J. and Gentle, J. E. [1980]: Statistical Computing, 華泰書局, pp192-200.
17. Kullback, S. [1959]: Information Theory and Statistics, New York: Wiley.
18. Lanchin, P. A. [1975]: Discriminant Analysis, Hafner Press, New York.
19. Lachin, J. M. [1973]: “On a stepwise procedure for two populations Bayes decision rules using discrete variables,” Biometrics, 29, 551-564.
20. Martin, D. C. and R. A. Bradley, [1972]: “Probability models estimation and classification for multivariate dichotomous populations,” Biometrics, 28, 203-222.
21. Matusita, K. [1955]: “Decision rules based on the distance for problems of fit, two samples and estimation,” Ann. Math. Stat. 26, 631-640.
22. Moore, D. H., II [1973]: “Evaluation of five discrimination procedures for binary variables,” J. Am. Stat. Assoc., 68-339-404.
23. SAS USER’S GUIDE: Statistics [1982], SAS INSTITUTE INC. CARY, NORTH CAROLINA.
24. Solomon, H. (Ed.) [1961]: Studies in Item Analysis & Prediction, Palo Alto, Calif.: Stanford University Press.
25. Weiner, J. and O. J. Dunn, [1966]: “Elimination of variates in linear discrimination problem,” Biometrics, 22, 268.
26. Welch, B. L. [1939]: “Note on discriminant functions,” Biometrika, 31, 218-220. |