English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52586834      Online Users : 1025
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/89640
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/89640


    Title: 離散資料之多重比較
    On multiple comparisons for discrete data
    Authors: 蘇聖珠
    Contributors: 宋文昌
    蘇聖珠
    Date: 1991
    1990
    Issue Date: 2016-05-02 17:02:43 (UTC+8)
    Abstract: 在生物學,醫學,社會科學等領域中,吾人常須分析離散資料。例如:生物學家培育新品種動植物之存活率資料; 醫生臨床實驗所得數據;社會工作專家藉抽樣調查所得之問卷資料多為離散資料。若欲同時比較離散資料各類別均值間之差異最適當的統計方法之一是統計多重比較。
    針對離散性資料,傳統的多重比較方法幾全是Scheffe的卡方投影或自其衍生之方法。一般而言,Scheffe的方法失之過份保守,即聯合信賴域的周界太長。本文之主旨即在研究改善傳統的方法並提出較精確的多重比較計算法則。值得強調的是:我們所提的比較方法皆奠基於大樣本之常態近似法則。此乃因應小樣本時,待比較參數的估計式,其分配函數常極其複雜的情況下,所必須採取的權宜措施。
    在研究結構方面,本文係採確立聯合信賴區間的方式,並依所欲比較參數之三種常見型態,分別探討離散資料之三種抽樣模式:多項、二項、波松分配模式。在參數估計方面,我們皆盡可能將資料試以適當之log-linear 模式,再以該模式為基礎進行所欲比較參數的估計。經典著名離散資料實例(散見於著名離散資料分析著作中)驗證,本論文所提之多重比較方法確實能改善傳統的方法。
    Reference: 1. Bihapkar,V.P.and Somes,G.W. (1976).Multiple comparisons of matched proportions. Communications in Statistics, Ser.A,5,17-25.
    2. Bishop.Y.M.M,Fienberg,S.E. & Holland.P.W. (1975). Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge. Mass.
    3. Bofinger,E. (1985). Multiple comparisions and type III errors. Journal of the American Statistical Association 80,433-437.
    4. Cochran,W. (1950). The comparision of percentages in matched samples. Biometrika 37.256-266.
    5. Dorn,H.F. (1954).The relationship of cancer of the lung and the use of tobacco. American Statistician 8.7-13.
    6. Dowdall,J.A. (1974). Women`s attitudes toward employment and family roles. Sociological Analysis 35,251-262.
    7. Dunnett,C.W. (1980). Pairwise multiple comparisions In the homogeneous variance. unequal sample size case. Journal of the American Statistical Association 75.789-795.
    8. Dunnett,C.W. (1980).Pairwise multiple comparisions in the unequal variance case. Journal of the American Statistical Association 75.796-800.
    9. Fleiss,J. (1981). Statistial Methods for Rates and Proportions,2nd edition. Wiley , New York.
    10.Gold,R.Z. (1963). Tests auxiliary to x2 tests in a markov chain. Annuals of Mathematical Statistics 34.56-74.
    11.Goodman,L.A. (1964) .Simultaneous confidence limits for cross-product ratios in contingency tables. Journal of the Royal Statistical Society.Ser.B,26,86-102.
    12.Goodman,L.A. (1965) .On simultaneous confidence intervals for multinomial proportions. Technometrics 7.247-254.
    13.Haberman,S.J. (1978). Anaiysis of Qualitative Data, Vol.1. Academic Press. New York.
    14.Haldane.J.B.S. (1955). The estimation and significance of the logarithm of a ratio of frequencies. Ann.Hum.Genet.20,309-311.
    15.Hayter,A.J. (1984). A proof of the conjecture that the Tukey-Kramer multiple comparisons procedure is conservative. The Annals of Statistics 12,61-75.
    16.Hayter,A.J. (1985). A study of the Tukey multiple comparisons procedure including a proof of the Tukey conjecture for unequal sample sizes. unpublished doctoral dissertation, cornell University.
    17.Hochberg,Y.and Tamhane, A.C. (1987). Multiple comparison Procedures. Wiley,New York.
    18.Hsu.J.C. (1981).Simultaneous confidence intervals for all distances from the best. The Annals of Statistics 9,1026-1034.
    19.Hsu,J.C. (1989) .Simultaneous confidence intervals in the General Linear Models.Computer Sciense and Statistic:Proceedings of the 20th Symposium on the Interface,E.J.Wegman.D.T.Gantz.J.J.Miller editors. American Statistical Association. Alexandria, Virginia.
    20.Hsu,J.C.Soong,W.C. (1990) Using the Fast Fourier Transform to compute multiple comparisons with the best and subset selection critical values.Communications in Statistics 19(4) ,1377-1391.
    21.Jonnson.R.A.and Wichern.D.W. (1982). Appliced Multivariate Statistical Analysis. Prentice-Hall,Enflwood Cliffs, New Jersey.
    22.McCullagh.P.and Nelder.J.A. (1983) Generalized Linear Models Chapman and Hall.Hew York.
    23.Miller,R.G. (1981) .Simultanlous Statistical Inference,2nd edition. Springer-Verlag. New York.,Jukey,J.W. (1953) .The Promblem for multiple comparisons. Unpublished manuscript.
    24.Plackett,P.L. (1954).A reduction formula for normal multivariate integrals. Biometrika 41,351-360.
    25.Plackett,P.L. (1962).A note fo interactions in contingency tables. Journal of the Royal Statistical Society, Ser.B,24,162-166.
    26.Quesenberry, C.P.and Hurst,D.C. (1964) . Large sample simultaneous confidence intervals for multinomial proportions. Technometrics 6,191-195.
    27.Scheffe,H. (1959). The Analysis of Variance. Wiley,New York.
    28.Soong,vl.C. (1989) .Multiple comparisons for complex experimental designs. THESIS.
    29.Spurrier.J.D.and Isham,S.P. (1985).Exact simultaneous confidence intervals for pairwise comparisions of three normal means. Journal of the American Statistical Association 80.438-442.
    30.Tukey,J.W. (1953). The problem of multiple comparisons. Unpublished manuscript.
    31.Uusipaikka,E. (1985).Exact simultaneous confidence intervals for multiple comparisons among three or four values. Journal of the American Statistical Association 80.196-201.
    32.Welsch,R.E. (1977) . Stepwise multiple comparison procedure.Journal of the American Statistical Association 72,566-574.
    Description: 碩士
    國立政治大學
    統計學系
    Source URI: http://thesis.lib.nccu.edu.tw/record/#B2002005027
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2240View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback