English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51789050      Online Users : 393
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/89017
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/89017


    Title: 當 k>v 之貝氏 A 式最適設計
    Bayes A-Optimal Designs for Comparing Test Treatments with a Control When k>v
    Authors: 楊玉韻
    Yang, Yu Yun
    Contributors: 丁兆平
    Ting,Chao Ping
    楊玉韻
    Yang,Yu Yun
    Keywords: 集區設計
    A式最適設計
    貝氏實驗設計
    BTB設計
    強韌設計
    近似最適設計
    Block designs
    A-optimal designs
    Bayes experimental designs
    BTB designs
    robust designs
    Date: 1993
    Issue Date: 2016-04-29 16:43:49 (UTC+8)
    Abstract: 在工業、農業、或醫藥界的實驗中,經常必須拿數個不同的試驗處理(test treatments)和一個已使用過的對照處理(control treatment)比較。所謂的試驗處理可能是數組新的儀器、不同配方的新藥、或不同成份的肥料等。以實驗新藥為例,研藥者想決定是否能以新藥取代原來所使用的藥,故對v種新藥與原藥做比較,評估其藥效之差異。為了降低實驗中不必要的誤差以增加其準確性,集區設計成為實驗者常用的設計方法之一;又因A式最適設計是我們欲估計的對照處理效果(effect)與試驗處理效果之差異之估計值最小的設計,基於此良好的統計特性,我們選擇A式最適性為評判根據。古典的A式最適性並未將對照處理與試驗處理所具備的先前資訊(prior information)加以考慮,以上例而言,我們不可能對原來使用的藥一無所知,經由過去的實驗或臨床的反應,研藥者必已對其藥性有某種程度的了解,直觀上,這種過去經驗的累積,影響到實驗配置上,可能使對照處理的實驗次數減少,相對地可對試驗處理多做實驗,設計遂更具意義。因而本文考慮在k>v的情形下之貝式最適集區設計,對先前分配施以某種限制,依據準確設計理論(exact design theory),推導單項異種消除模型(one- way elimination of heterogeneity model)之下的貝氏A式最適設計與Γ- minimax最適設計,使Majumdar(1992)的結果能適用於完全集區設計。此種設計對先前分配具有強韌性,即當先前分配有所偏誤,且其誤差在某一範圍內時,此設計仍為最適設計或仍可維持所謂的高效度(high efficiency)。本文將列舉許多實例以說明此一特性。

    We consider the problem of comparing a set of v test treatments simultaneously with a control treatment when k>v. Following the work of Majumdar(1992), we use exact design theory to derive Bayes A-optimal designs and optimal Γ-minimax designs for the one-way elimination of heterogeneity model. These designs have the same properties as of Bayes A-optimal incomplete block designs. We also provide several examples of robust optimal designs and highly efficient designs.
    Reference: Cheng.C.S. and Wu. C.F.(1980). Balanced Repeated Measurements Designs. The Annals of Statistics 8 1272-1283.
    Cheng.C.S.. Majumdar. D.. Stufken. J.. and Türe. T.E.(1988). Optimal steptype designs for comparing test treatments with a control. Journal of the American Statistical Association 83 477-482.
    Giovagnoli.A. and Verdinelli. I. (1983). Bayes D-optimal and E-optimal block desigus. Biometrika 70 695-706.
    Giovagnoli. A.and Verdinelli.I.(1985).Optimal block designs under a hierarchical linear model. In Bayesian Statistics 2 (J.M. Bernardo. M.H. DeGroot. D. V. Lindly and A.F.M.Smith.eds.) 655-662. North –Holland. Amsterdam.
    Hedayat. A.S.. Jacroux. M. and Majundar. D. (1988). Optimal designs for comparing test treatments with controls. Statistical Science 3 462-491.
    Jacroux.M.and Majumdar. D.(1989). Optimal block designs for comparing test treatments with a control when k > r. Journal of Statistical Planning and Inference 23 381-396.
    Majumdar. D. (1988). Optimal block designs for comparing new treatments with a standard treatment. In Optimal Design and Analysis of Experiments (Y. Dodge. V.V. Fedorov and H.P. Wynn. Eds.) 15-27.North –Holland. Amsterdam.
    Majumdar. D. (1992). Optimal designs for comparing test treatments with a control utilizing prior information. The Annals of Statistics 20 216-237.
    Majumdar. D. and Notz, W. I. (1983). Optimal incomplete block designs for comparing test treatments with a control. The Annals of Statistics 11 258-266.
    Owen R.J. (1970). The optimum design of a two-factor experiment using prior information. The Annals of Mathematical Statistics 41 1971-1934.
    Stufken. J.(1991). Bayesian optimal experimental design for treatment-control comparisous in the presence of two-way heterogeneity. Journal of Statistical Planning and Inference 27 51-63.
    Description: 碩士
    國立政治大學
    統計學系
    G80354005
    Source URI: http://thesis.lib.nccu.edu.tw/record/#B2002004192
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2269View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback