政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/85893
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113869/144892 (79%)
造访人次 : 51893563      在线人数 : 557
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/85893


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/85893


    题名: 台灣地區總人口數之預測分析
    作者: 邱惟俊
    贡献者: 鄭天澤
    邱惟俊
    关键词: 介入模式
    時間數列迴歸
    轉換函數模式
    指數平滑法
    總人口數
    育齡婦女總生育率
    粗出生率
    粗死亡率
    日期: 1998
    上传时间: 2016-04-21 09:55:10 (UTC+8)
    摘要: 人口政策是政府的重要政策之一,而總人口數則是政府制定政治、經濟、社會及文化發展計畫之主要參考依據,因此如何準確地預測未來的總人口數就成為政府相關部門重要的課題。
    In this thesis, we plan to construct various time series models for the total population in Taiwan. The following time series models are considered: ARIMA intervention model, time series regression model, transfers founction intervention model and exponential smoothing method. The input variable considered in the transfer function intervention model include total fertility rate, crude birth rate and crude death rate. We also compare the prediction performance of these models by using mean absolute percentage error (MAPE) and root mean square percentage error (RNSPE). It turns out that the transfer function intervention model with total fertility rate as input is the best model. While the transfer function intervention model with crude birth rate as input ranks the second best. Finally we forecast the total population of the next ten years by using the above two best models and compare with the middle population projection by Manpower Planning Department in Executive YUAN-Council for Economic Planning and Development. The mean absolute percentage error are 0.138% and 0.165% respectively. This result justifies that the time series model has excellent predictive ability and should be considered for total population prediction.
    參考文獻: 『參考文獻』
    [1] 內政部統計處,1998,生命表編算方法改進報告,行政院八十七年研考會經費補助案67-69頁。
    [2] 吳柏林與廖敏治,1992,台灣地區結婚率、出生率、人口成長率的時間數列模式探討,人口學刊,第十四期,109-132頁。
    [3] 林茂文,1992,時間數列分析與預測,台北:華泰書局。
    [4] 鄭天澤與李旭煌,1995,台灣地區出國觀光旅客需求預測模式之比較分析,國立政治大學學報,第七十一期,179-210頁。
    [5] 行政院經濟建設委員會人力規劃處,1999,中華民國台灣地區民國87年至140年人口推計。
    [6] Ahlburg, D. A. (1992), “Population forecasting:Guest Editors’introduction”, International Journal of Forecasting, 8, 289-299.
    [7] Akaike, H. (1973), “Information Theory and an Extension of the Maximum Likelihood Principle”, in Proceedings of the 2nd
    International Symposium on Information Theory, 267-281.
    [8] Bowerman, B. L., and R. T. O’Connell, (1993), Forecasting and Time Series:An Applied Approach, 3rd ed. Boston:Duxbury.
    [9] Box, G. E. P. and G. M. Jenkins, (1994), Time Series Analysis, Forecasting and Control, 3rd ed. San Francisco:Holden-Day.
    [10] Carter, L. R. (1996), “Forrecasting U.S. Mortality:A Comparison of Box-Jenkins ARIMA and Structural Time Series Models”, The Sociological Quarterly, 37, 127-144.
    [11] El-Attar, S. (1988), “Population Forecasting:An Application of the Box-Jenkins Technique”, American Statistical Association, Proceedings of the Social Statistics Section, 305-310.
    [12] Kashyap, R. L. and A. R. Rao, (1976), Dynamic Stochastic Models from Empirical Data, Academic Press, New York, San Francisco, London.
    [13] Lee, R. D. (1992), “Stochastic Demographic Forecasting”,
    International Journal of Forecasting, 8, 315-327.
    [14] Lee, R. D. (1993), “Modeling and Forecasting the Time Series of US Fertility:Age Distribution, Range, and Ultimate Level”,International Journal of Forecasting, 9, 187-202.
    [15] Lee, R. D., and Tuljapurkar, S. D. (1994), “Stochastic
    Population Forecasts for the United States:Beyond High, Medium, and Low”, Journal of American Statistical Association, 89, 1175-1189.
    [16] Pflaumer, P. (1992), “Forecasting US Population Totals with the Box-Jenkins Approach”, International Journal of Forecasting, 8, 329-338.
    [17] Schwartz, G. (1978), “Estimating the Dimension of Model”, The Annals of Statistics, 6, 461-464.
    [18] Voss, P. R. and C. D. Palit, (1981), “Forecasting State Population Using ARIMA Time Series Techniques”, Technical Series 70-6, University of Wisconsin-Madison, WI.
    描述: 碩士
    國立政治大學
    統計學系
    86354007
    資料來源: http://thesis.lib.nccu.edu.tw/record/#B2002001564
    数据类型: thesis
    显示于类别:[統計學系] 學位論文

    文件中的档案:

    没有与此文件相关的档案.



    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈