Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/85144
|
Title: | 半折疊解析度Ⅲ之二水準部份因子設計 |
Authors: | 徐佳琳 |
Contributors: | 丁兆平 徐佳琳 |
Keywords: | 半折疊 解析度III 部份因子設計 |
Date: | 2001 |
Issue Date: | 2016-04-15 16:10:20 (UTC+8) |
Abstract: | 在部份因子設計的領域中,『半折疊設計』(semifolding design)的觀念與技巧在解析度IV的設計裡已有詳盡的介紹與探討,但在解析度III的設計中,到目前為止,卻尚未有詳盡的探討,所以本篇論文主要是針對16-run及32-run解析度III的設計,利用John (2000) 和Li and Mee (2000) 所提的概念與作法,進行半折疊。本論文所建議之半折疊過程為先將原始設計分成二集區,然後再對其中一集區進行折疊。文中將表列最佳分集區的因子組合,並將應用實例與在四種不同的考量下,來對半折疊設計與全折疊設計做一比較。 In the area of the fractional factorial design, the concepts and techniques of semifolding have been developed for resolution IV designs, but they are not yet done for resolution III designs. This paper, however, focuses on 16-run and 32-run resolution III designs. We apply the concepts and techniques of semifolding in John (2000) and Li and Mee (2000) to resolution III designs as they have established for resolution IV designs. The procedure we suggest in doing semifolding in this paper is to block the original design into two sections, and then fold over one section. The “optimal” blocking factors are listed in tables, and the performance of semifolding designs in comparison with that of foldover designs are shown by means of examples. |
Reference: | 1. Barnett, J., Czitrom, V., John, P.W.M., and Leon, R.V.(1997). Using Fewer Wafers to Resolve Confounding in Screening Experiments. in Statistical Case Studies for Industrial Process Improvement, eds. V. Czitrom and P.D. Spagon, Philadelphia: SIAM, 235-250. 2. Box, G.E.P., and Hunter, J.S.(1961a). The 2k-p Fractional Factorial Designs, Part I. Technometrics, 3, 311-352. 3. Li, H. and Mee, R.W.(2000). Optimal Foldovers of Designs. Technical Report No.2000-1, Department of Statistics, University of Tennessee. 4. Chen, J., Sun, D.X., and Wu, C.F.J.(1993). A Catalog of Two-Level and Three-Level Fractional Factorial Designs with Small Runs. International Statistical Review, 61, 131-145. 5. Montgomery, D.C.(2001). Design and Analysis of Experiments, 5th ed., John Wiley & Sons, New York, NY. 6. Montgomery, D.C.(1996). Foldovers of 2k-p Resolution Ⅳ Experimental Designs. Journal of Quality Technology, 28, 446-450. 7. John, P.W.M.(2000). Breaking Alias Chains In Fractional Factorials. Communication in Statisticas.—Theory Methods,29 (9?),2143-2155.(2000) 8. Mee, R.W. and Peralta, M.(2000). Semifolding 2k-p Designs. Technometrics, 42, 122-134. |
Description: | 碩士 國立政治大學 統計學系 88354019 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#A2002001357 |
Data Type: | thesis |
Appears in Collections: | [統計學系] 學位論文
|
Files in This Item:
There are no files associated with this item.
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|