政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/85136
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52056437      Online Users : 781
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/85136


    Title: 台灣地區主要資訊電子產品需求預測模式之比較分析
    Authors: 陳佳瑜
    Contributors: 鄭天澤
    陳佳瑜
    Keywords: 時間序列
    類神經網路
    資訊電子
    Date: 2001
    Issue Date: 2016-04-15 16:10:04 (UTC+8)
    Abstract: 台灣在世界上已是資訊電子工業產品的主要生產國家,且民國89年資訊電子工業產值占我國全體製造業產值的百分之三十四,資訊電子工業的榮枯對台灣經濟的影響相當大,故對資訊電子產品市場需求狀況的掌握,對任一相關機構均是非常重要的。本研究之目的在運用時間序列分析中的單變量時間序列模式及轉移函數模式、類神經網路中的倒傳遞類神經網路,及整合預測模式建立台灣地區主要資訊電子產品銷售量之預測模式,並加以分析比較,決定最適之模式,並據以預測未來需求;提供未來政府相關單位之參考。
    Reference: 1. Adya, M. and Collopy, F. (1998). How effective are neural networks at Forecasting and Prediction? A Review and Evaluation. Journal of Forecasting. 17, 481-495.
    2. Ahlburg, D. A. (1992). Error measures and the choice of forecast method. International Journal of Forecasting 8, 99-100.
    3. Ansuj, A. P.; Camargo, M.E., Radharamanan, R. and Petry, D.G. (1996). Sales forecasting using time series and neural networks. Computers and Industrial Engineering 31, 421-424.
    4. Armstrong, J. S. and Collopy, F. (1992) Error measures for generalizing about forecasting methods: Empirical comparisons. International Journal of Forecasting 8, 69-80.
    5. Beale, R. and Jackson, T. (1991). Neural Computing - an Introduction. Adam Highler Publ.
    6. Bowerman, B. L. and O’Connell, R. T. (1993). Forecasting and time series: an applied approach. Wadsworth.
    7. Box, G. E.P.; Jenkins, C. M. and Reinsel, G. C. (1994). Time series analysis: Forecasting and control. Prentice-Hall.
    8. Brandon, C.; Fritz, R. and Xander, J. (1983). Econometric forecasts: evaluation and revision. Applied Economics 15, 187-201.
    9. Carbone, R. and Armstrong, J. S. (1982). Evaluation of extrapolative forecasting methods: results of a survey of academicians and practitioners. Journal of forecasting 1, 215-217.
    10. Cryer, Jonathan D. (1986). Time series analysis. PWS Publ.
    11. Foster, W.R.; Collopy, F. and Ungar, L.H. (1992). Neural network forecasting of short, noisy time series’, Computers and chemical engineering 16, 293-297.
    12. Granger, C. W. J. and Ramanathan, R. (1984). Improved Methods of combing forecasts. Journal of Forecasting 3, 197-204.
    13. Kaastra, I. and Boyd, M. S (1995). Forecasting futures trading volume using neural networks. The Journal of Futures Markets.15, 953-971.
    14. Kurawarwala, A. A; Matsuo, H. (1998). Product growth models for medium term forecasting of short life cycle products. Technological Forecasting and Social Change 57, 169-196.
    15. Makridakis, S. (1993). Accuracy measures: theoretical and practical concerns. International Journal of Forecasting 9, 527-529.
    16. Makridakis, S. and Winkler, R. L. (1983). Averages of forecasts: some empirical results’, Management Science 29, 987-996.
    17. Makridakis, S.; Andersen, A.; Carbone, R.; Fildes, R.; Hilbon, M.; Lewandowski, R.; Newton, J.; Parzen, E. and Winkler, R. (1982). The accuracy of extrapolation (Time series) methods: Results of a forecasting competition. Journal of Forecasting 1, 111-153.
    18. Moon, Y. B.; Janowski, R. (1995). A neural network approach for smoothing and categorizing noisy data. Computers in Industry, 26, 23-29.
    19. Moshiri, S. and Cameron, N. (2000). Neural network versus econometric models in forecasting inflation. Journal of forecasting, 19, 201-217.
    20. Nelson, M.; Hill, T.; Remus, W. and O’Conner, M. (1999). Time series forecasting using neural networks: should the data be deseasonalized first? Journal of forecasting 18.
    21. Rutherford, D. P. and Wilhelm, W. E. (1999). Forecasting notebook computer price as a function of constituent features. Computers & Industrial Engineering 37, 823-845.
    22. Sperecher, D. A. (1996). A numerical implement of Kolmogorov’s superpositions. Neural Networks 9, 765-772.
    23. Tang, Z.; Almeida, C. de and Fishwick, P. A. Time series forecasting using neural networks vs. Box-Jenkins methodology. Simulation 57, 303-310.
    24. 2000電子工業市場年鑑,新電子科技雜誌,民國八十九年。
    25. 古竣明,「類神經網路之預測與信賴區間之建構—以東南亞金融風暴後新台幣兌美元匯率為例」,輔仁大學應用統計學研究所,碩士論文,民國八十八年。
    26. 交通銀行徵信處,產業調查與技術,第133期,民國九十年。
    27. 呂佳諺,「時間數列預測及決策支援系統-運用神經網路與基因演算法」,國立海洋大學電機工程學系,碩士論文,民國八十四年。
    28. 李鎮旗,企業銷售預測之理論與實證研究—以台電公司為例,中山大學企業管理研究所,碩士論文,民國八十二年。
    29. 吳柏林,時間數列分析導論,華泰出版社,民國八十三年。
    30. 陳雲明,「台灣地區啤酒市場銷售預測之研究」,朝陽大學企業管理學系碩士班,碩士論文,民國八十八年。
    31. 陳瑞卿,「應用總體經濟因素於加權股價指數的預測-類神經網路與多元迴歸比較之研究」,國立交通大學資訊管理研究所,碩士論文,民國八十八年。
    32. 黃天麟,「台灣地區積體電路生產預測之研究」,輔仁大學應用統計學研究所,碩士論文,民國八十八年。
    33. 黃淇竣,「台灣地區資訊電子產業產品生命週期探討及展望」,國立中央大學資訊管理研究所,碩士論文,民國八十六年。
    34. 經濟部統計處(1995~2000),工業生產統計初步速報。
    35. 廖鴻儒,「國內上市銀行利率風險與缺口管理之研究」,國立成功大學會計研究所,碩士論文,民國八十五年。
    36. 葉怡成,類神經網路模式應用與實做,儒林出版社,民國八十九年。
    37. 葉怡成,應用類神經網路,儒林出版社,民國八十六年。
    38. 蕭大全、王進德,類神模糊控制理論入門,全華科技出版社,民國八十三年。
    Description: 碩士
    國立政治大學
    統計學系
    88354018
    Source URI: http://thesis.lib.nccu.edu.tw/record/#A2002001349
    Data Type: thesis
    Appears in Collections:[Department of Statistics] Theses

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2206View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback