政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/82754
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51732659      Online Users : 615
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/82754


    Title: Stylized Empirical Features of Asset Return andAmerican Option pricing under time-changed
    Other Titles: 資產報酬財務現象與time-changed Lévy過程下美式選擇權定價
    Authors: 廖四郎;陳俊洪;連育民
    Liao, Szu-Lang;Chen, Jun-Home;Lian, Yu-Min
    Contributors: 金融系
    Keywords: 最小平方蒙地卡羅法;Normal Inverse Gaussian;Variance Gamma;Least-squared Monte Carlo Simulation;Esscher transform
    Date: 2014-03
    Issue Date: 2016-03-21 15:46:20 (UTC+8)
    Abstract: 過去實證研究發現,資產的動態過程存在不連續的跳躍與大波動伴隨大波動的波動度叢聚現象而造成資產報酬分配呈現出厚偉與高狹峰的情況,然而,此現象並不能完全被傳統所使用幾何布朗運動模型與跳躍擴散模型給解釋。因此,本文設定資產模型服從Lévy過程中Generalized Hyperbolic(GH)的normal inverse Gaussian(NIG)和variance gamma(VG)兩個模型,然而,Lévy過程是一個跳躍過程,是屬於一個不完備的市場,這將使得平賭測度並非唯一,因此,本文將採用Gerber和Shiu(1994)所提的Esscher轉換來求得平賭測度。關於美式選擇權將採用LongStaff and Schwartz(2001)所提的最小平方蒙地卡羅模擬法來評價美式選擇權。實證結果發現對於所比較的模型NIG、VG、JDM和GBM的評價績效並無顯著的差異,然而卻發現市場價格與理論價格有明顯的差距,因此,本研究從交易量與交易比數的觀點發現,樣本中的選擇權交易量與交易筆數都是偏低的,因此,缺乏流動性,根據Chen et al., 2013發現流動性與價值(Moneyness)對於評價誤差有重大的影響,因此,本文推論在此研究中評價誤差較大的原因,可能因於選擇權流動性低與過於價外,此外,模型間沒有顯著的差異,可能是模型配適度相似,且流動性低導致無法產生價格發現的效果。
    This paper evaluates the American put options under the assumptions the underlying stock return is non-normally distributed. The main idea comes from the fact of that the distributions of return for financial securities always have heavy tail and leptokurtic phenomena due to price jumps or changing return volatilities over time. In addition, the phenomena described above cannot be fully explained by the traditional GBM model or the Merton jump diffusion model. Hence, we adopt normal inverse Gaussian (NIG) and variance gamma (VG) two time-changed Lévy processes to model the asset dynamics which are proposed respectively by Barndorff-Nielsen(1995,1998) and Madan and Senata (1990). Regarding to the pricing methodology, we use the Esscher transform proposed by Geber et al., 1994 to find a martingale measure. Furthermore, we adopt the Least-squared Monte Carlo Simulation (LSM) proposed by LongStaff and Schwartz (2001) to deal with the early-exercised properties of the American options. The empirical results show that there is no big difference in pricing performance among GBM, JDM, NIG and VG models; however, there is significant difference between price and theoretical prices. According to Chen et al., 2013, they find the liquidity and moneyness have influence on pricing error, hence, the price error is huge in this study, we may infer the difference from the issue of liquidity and moneyness, Meanwhile, no distinct difference among models may result from the price discovery deficiency under illiquidity and the fitness of model.
    Relation: Soochow Journal of Economics and Business, No.84, 1-24
    東吳經濟商學學報
    Data Type: article
    Appears in Collections:[Department of Money and Banking] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    1-24.pdf1632KbAdobe PDF2611View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback