Reference: | 1.Hull, J., and White, A. (winter 2004) “Valuation of a CDO and an n-th to Default CDS without Monte Carlo Simulation.” The Journal of Derivatives, 12(2), 8-23.
2.Kalemanova, A., Schmid, B., and Werner, R. (spring 2007). “The Normal Inverse Gaussian Distribution for Synthetic CDO pricing.” The Journal of Derivatives,14, 80-93.
3.Lee, J.C., and Hu, L. (1996). “On the distribution of linear functions of independent F and U variates.” Statistics & Probability Letters, 26, 339-346.
4..Li, D. X. ( 2000 ). “On default correlation: a copula function approach.” Journal of Fixed Income , 9 ( 4 ), 43-54.
5.Liang, K., Lee, J.C., and Shao, K.S.H. (November 2006). “On the Distribution of the Inverted Linear Compound of Dependent F-Variates and its Application to the Combination of Forecasts. “ Journal of Applied Statistics , 33( 9), 961–973.
6. O’Kane, D., and Schlögl, L. (February 2001). “Modeling Credit: Theory and Practice.” Analytical Research Series, Lehman Brothers.
7. Wang, D., Rachev, S.T., and Fabozzi, F.J. (October 2006). Pricing Tranches of a CDO and a CDS Index: Resent Advances and Future Research. Working paper.
8. Wang , D., Rachev, S.T., and Fabozzi, F.J. (2009). “Pricing of Credit Default Index Swap Tranches with One-Factor Heavy-Tailed Copula Models.” Journal of Empirical Finance , 16 , 201–215 .
9.林聖航 (民101) 。探討合成型抵押擔保債券憑證之評價。國立政治大學統計學系碩士論文,台北市。
10.邱嬿燁 (民97) 。探討單因子複合分配關聯結構模型之擔保債權憑證之評價 。國立政治大學統計學系碩士論文,台北市。 |