政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/77918
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113648/144635 (79%)
造访人次 : 51631418      在线人数 : 546
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/77918


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/77918


    题名: 基於Penalized Spline的信賴帶之比較與改良
    Comparison and Improvement for Confidence Bands Based on Penalized Spline
    作者: 游博安
    Yu, Po An
    贡献者: 黃子銘
    Huang, Tzee Ming
    游博安
    Yu, Po An
    关键词: B-Spline
    Penalized Spline
    信賴帶
    混合效應模型
    無母數方法
    B-spline
    Penalized spline
    Confidence band
    Mixed model
    Nonparametric
    日期: 2015
    上传时间: 2015-08-24 10:33:55 (UTC+8)
    摘要: 迴歸分析中,若變數間有非線性(nonlinear)的關係,此時我們可以用B-spline線性迴歸,一種無母數的方法,建立模型。Penalized spline是B-spline方法的一種改良,其想法是增加一懲罰項,避免估計函數時出現過度配適的問題。本文中,考慮三種方法:(a) Marginal Mixed Model approach, (b) Conditional Mixed Model approach, (c) 貝氏方法建立信賴帶,其中,我們對第一二種方法內的估計式作了一點調整,另外,懲罰項中的平滑參數也是我們考慮的問題。我們發現平滑參數確實會影響信賴帶,所以我們使用cross-validation來選取平滑參數。在調整的cross-validation下,Marginal Mixed Model的信賴帶估計不平滑的函數效果較好,Conditional Mixed Model的信賴帶估計平滑函數的效果較好,貝氏的信賴帶估計函數效果較差。
    In regression analysis, we can use B-spline to estimate regression function nonparametrically when the regression function is nonlinear. Penalized splines have been proposed to improve the performance of B-splines by including a penalty term to prevent over-fitting. In this article, we compare confidence bands constructed by three estimation methods: (a) Marginal Mixed Model approach, (b) Conditional Mixed Model approach, and (c) Bayesian approach. We modify the first two methods slightly. In addition, the selection of smoothing parameter of penalization is considered. We found that the smoothing parameter affects confidence bands a lot, so we use cross-validation to choose the smoothing parameter. Finally, based on the restricted cross-validation, Marginal Mixed Model performs better for less smooth regression functions, Conditional Mixed Model performs better for smooth regression functions and Bayesian approach performs badly.
    參考文獻: Sun, J. (1993), ”Tail Probabilities of the Maxima of Gaussian Random Fields,” The Annals of Probability, 21 (1), 34-71.

    Sun, J., and Loader, C. R. (1994), ”Simultaneous Confidence Bands for Linear Regression and Smoothing,” The Annals of Statistics, 22 (3), 1328-1345.

    Eilers, P.H. C., and Marx, B. D. (1996), “Flexible Smoothing With B-splines and Penalties” Statistical Science, 11 (2), 89-121.

    Hall, P., and Opsomer, J. (2005), “Theory for Penalized Spline Regression,” Biometrika, 92, 105-118.

    Crainiceanu, C. Ruppert, D., Carroll, R., Adarsh, J., and Goodner, B. (2007),”Spatially Adaptive Penalized Splines With Heteroscedastic Errors,” Journal of Computational and Graphical Statistics, 16, 265-288.

    Li, Y., and Ruppert, D. (2008), “On the Asymptotics of Penalized Splines,” Biometrika, 95 (2), 415-436.

    Claeskens, G. Krivobokova, T., and Opsomer, J. (2009), “Asmptotic Properties of Penalized Spline Estimators,” Biometrika, 96 (3), 529-544.

    Kauermann, G., Krivibokova, T., and Fahrmeir, L. (2009), “Some Asymptotic Results on Generalized Penalized Spline Smoothing,” Journal of the Royal Statistical Society, Ser. B, 71 (2), 487-503.

    Krivobokova, Kneib, and Claeskens. (2010), “Simultaneous Confidence Bands for Penalized Spline Estimators,” Journal of the American Statistical Association, 105-490.
    描述: 碩士
    國立政治大學
    統計研究所
    102354016
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G1023540161
    数据类型: thesis
    显示于类别:[統計學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    016101.pdf894KbAdobe PDF2502检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈