Reference: | [1] Abbasi, S.A. and Miller, A., (2011). “ MDEWMA chart: An efficient and robust alternative to monitor process dispersion, ’’ Journal of Statistical Computation and Simulation, 83(2), 247-268. [2] Abbasi, S.A., Miller, A. and Riaz, M., (2013). “ Nonparameteric Progressive Control Chart for Monitoring Process Target, ” Quality and Reliability Engineering International, 29, 1069-1080. [3] Altukife, P. F., (2003). “ A new nonparametric control charts based on the observations exceeding the grand median, ” Pakistan Journal of Statistics, 19(3), 343–351. [4] Alwan, L. C., (1981). Statistical Process Analysis, McGraw-Hill: New York. [5] Amin, R., Reynolds, M.R., and Baker, S., (1995). “ Nonparametric quality control charts based on the sign statistic, ” Communications in Statistics—Theory and Methods, 24, 1597–1624. [6] Arnold, B.C., Balakrishnan, N., and Nagaraja, H.N., (1992). A First Course in Order Statistics, John Wiley & Sons, Inc: New York. [7] Azzalini, A., (1981). “ A note on the estimation of a distribution function and quantiles by a kernel method, ” Biometrika, 68(1), 326—328. [8] Bowman, A.W. and Azzalini, A., (1997). Applied Smoothing Techniques for Data Analysis--The Kernel Approach with S-Plus Illustrations, Oxford Science Publication. [9] Braun, W.J. and Park, D., (2008). “ Estimation of for individuals charts, ” Journal of Quality Technology, 40(3), 332–344. [10] Casella, G. and Berger, R.L., (2002). Statistical Inference, second Edition, Duxbury (2002). [11] Chacon, J.E. and Duong, T., (2010). “ Multivariate plug-in bandwidth selection with unconstrained pilot matrices, ” Test, 19, 375-398. [12] Chakraborti, S. and Graham, M., (2007). Nonparametric Control Charts, Encyclopedia of Quality and Reliability, John Wiley & Sons, Inc: New York. [13] Chakraborti, S., Lann, P. and Van der Wiel, M.A., (2001). “ Nonparametric control charts: an overview and some results, ” Journal of Quality Technology, 33(3), 304–315. [14] Chao, M. T. and Cheng, S. W., (2008). “ On 2-D control charts, ” Quality Technology and Quantitative Management, 5(3), 243-261. [15] Chowdhury, S., Mukherjee, A. and Chakraborti, S., (2014). “ A New Distribution-free Control Chart for joint Monitoring of Unknown location and scale parameters of Continuous Distributions, ” Quality and Reliability Engineering International, 30(2), 191–204. [16] Das, N. and Bhattacharya, A., (2008). “ A new non-parametric control chart for controlling variability, ” Quality Technology and Quantitative Management, 5(4), 351–361. [17] Duong, T. and Hazelton, M.L., (2003). “ Plug-in bandwidth matrices for bivariate kernel density estimation, ” Journal of Nonparametric Statistics, 15, 17-30. [18] Gan, F.F., (1995). “ Joint Monitoring of Process Mean and Variance Using Exponentially Weighted Moving Average Control Charts, ” Technometrics, 37, 446-453. [19] Jones, M.C., (1990). “ The performance of kernel density functions in kernel distribution estimation, ” Statistics and Probability Letters, 9, 129—132. [20] Maravelakis, P., Panaretos, J., and Psararkis, S., (2005). “ An examination of the robustness to nonnormality of the EWMA control chart for the dispersion ”, Communications in Statistics: Simulation and Computation, 34 (4), 1069-1079. [21] McCracken, A. K. and Chakraborti, S., (2013). “ Control charts for joint monitoring of the mean and variance: an overview, ” Quality Technology & Quantitative Management, 10(1), 17-36. [22] Mukherjee, A. and Chakraborti, S., (2012). “ A nonparametric phase II control chart for simultaneous monitoring of location and scale, ” Quality and Reliability Engineering International, 28(3), 335-352. [23] Park, B. U. and Marron, J. S., (1990). “ Comparison of data-driven bandwidth selectors, ” H. Am. Statist, 85, 66-72. [24] Sheather, S. J. and Jones, M. C., (1991). “ A reliable data-based bandwidth selection method for kernel density estimation, ” Journal of the Royal Statistical Society, Series B, 53, 683–690. [25] Silverman, BW., (1996). Density Estimation, Chapman & Hall: London. [26] Sturges, H.A., (1926). “ The choice of a class interval, ” Journal of the American Statistical Association, 21, 65-66. [27] Wand, M.P. and Jones, M.C., (1994). “ Multivariate plug in bandwidth selection, ” Computational Statistics, 9, 97-116. [28] Yang, S.F. and Arnold, B.C., (2014). “ A Simple Approach for Monitoring Business Service Time Variation, ” The scientific World Journal, 2014, 1-16. [29] Yang, S.F., Lin, J. and Cheng, S., (2011). “ A New Nonparametric EWMA Sign Chart, ” Expert Systems with Applications, 38(5), 6239-6243. [30] Zhang, J., Zou, C. and Wang, Z., (2010). “ A control chart based on likelihood ratio test for monitoring process mean and variability, ” Quality and Reliability Engineering International, 26(1), 63-73. [31] Zhou, M., Geng W. and Wang Z., (2014). “ Likelihood Ratio-Based Distribution-Free Sequential Change-Point Detection, ” Journal of Statitical Computation and Simulation ,84(12), 2748-2758. [32] Zou, C. and Tsung, F., (2010). “ Likelihood ratio-based distribution-free EWMA control Charts, ” Journal of Quality Technology, 42(2), 174-196. |