政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/76857
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114367/145401 (79%)
造訪人次 : 53050857      線上人數 : 702
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/76857
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/76857


    題名: 動態機率管制界線的二項累積和管制圖的設計
    Design of Binomial CUSUM Charts with Dynamic Probability Control Limits
    作者: 卓緯倫
    Cho, Wei Lun
    貢獻者: 楊素芬
    Yang, Su Fen
    卓緯倫
    Cho, Wei Lun
    關鍵詞: 不合格率
    累積和
    積分方程式
    動態管制界線
    快速起始反應
    高良率製程
    統計製程管制
    Fraction Nonconforming
    Cumulative sum
    Integral equation
    dynamic control limits
    fast initial response
    high yield process
    statistical process control
    日期: 2015
    上傳時間: 2015-07-27 11:21:16 (UTC+8)
    摘要: 傳統的二項累積和(CUSUM)管制圖是監測不合格率變化的有效工具。在本文中,我們考慮了俱有機率管制界線的二項CUSUM管制圖的設計,旨在控制每一期的條件誤報率達到所需的值。與固定的管制界線相比,機率管制界線將會是動態的,且更一般化、更能適應各種複雜的實際情況。在本文中,我們著重在機率管制界線的決定。藉由積分方程式法的發展,以促成動態二項加權CUSUM管制圖的設計與分析。俱有機率管制界線或固定管制界線的二項加權CUSUM管制圖與是否俱有快速起始反應特性的管制圖皆進行了比較。此外,在高良率的情境下,我們互相比較俱有機率管制界線與固定管制界線的二項加權CUSUM管制圖在製程失控時的偵測力表現。舉了一個例子來說明該如何應用所提出的管制圖。比較的結果顯示,動態界線的管制圖優於固定管制界線的管制圖,且在高良率的情況下,若樣本數越大,對動態管制界線的管制圖越有利。
    The conventional binomial CUSUM chart is an efficient tool for monitoring changes in fraction nonconforming. In this paper, we consider the design of Binomial CUSUM charts with probability control limits aimed at controlling the condi- tional false alarm rate at the desired value at each time step. The resulting control limits would be dynamic, which are more general and capable of accommodating more complex situations in practice as compared to the use of a constant control limit. In this paper, We focus on the determination of the probability control limits. An integral equation approach is developed to facilitate the design and analysis of the binomial WCUSUM control chart with probability control limits. The performance of the binomial WCUSUM charts with probability and constant control limits and the binomial WCUSUM charts with and without the fast initial response feature are compared. Besides, we compared the out-of-control detection perfromance of the binomial WCUSUM charts with probability and constant control limits for high yield process. An example is used to illustrate the application of the proposed control chart. Our comparisons show that the binomial WCUSUM chart with probability control limits generally outperforms the WCUSUM chart with constant control limits, and the conventional binomial CUSUM control chart with a constant control limit for high yield process when the sample size is large.
    參考文獻: [1] Bourke, P. D. (1991). ”Detecting a Shift in Fraction Non-conforming Using Run-Length Control Charts with 100% Inspection”. Journal of Quality Technology 23(3), pp. 225-238.
    [2] Bourke, P. D. (1992). ”Performance of Cumulative Sum Schemes for Monitor- ing Low Count-level Processes”. Metrika 39, pp. 365-384.
    [3] Bourke, P. D. (2001). ”Sample Size and the Binomial CUSUM Control Chart: the Case of 100% Inspection”. Metrika 53, pp. 51-70.
    [4] Box, G. E. P. and Ramirez, J. G. (1992). ”Cumulative Score Charts”. Quality and Reliability Engineering International 8(1), pp. 17-27.
    [5] Calvin, T. W. (1987). ”Quality control techniques for ’zero-defects’”. Components, Hybrids and Manufacturing Technology 6, pp. 323-328.
    [6] Chan, L. Y.; Xie, M.; and Goh, T. N. (2000). ”Cumulative Quantity Control Charts for Monitoring Production Processes”. International Journal of Production Research 38, pp. 397- 408.
    [7] Chang, T. C. and Gan, F. F. (2001). ”Cumulative Sum Charts for High Yield Processes”. Statistica Sinica 11, pp. 791-805.
    [8] Duran, R .I. and Albin, S. L. (2009). ”Monitoring a Fraction with Easy and Reliable Settings of the False Alarm Rate”. Quality and Reliability Engineering International 25(8), pp. 1029- 1043.
    [9] Gan, F. F. (1990). ”Monitoring Observations Generated from a Binomial Distri- bution Using Modified Exponentially Weighted Moving Average Control Chart”. Journal of Statistical Computation and Simulation 37(1), pp. 45-60.
    [10] Gan, F. F. (1993). ”An Optimal Design of CUSUM Control Charts for Binomial Counts”. Journal of Applied Statistics 20(4), pp. 445-460.
    [11] Goh, T. N. (1987). ”A control chart for very high yield processes”. Quality Assurance 13, pp. 18-22.
    [12] Haridy, S.; Wu, Z.; Yu, F. J.; and Shamsuzzaman, M. (2013). ”An Optimisation Design of the Combined n p-CUSUM Scheme for Attributes”. European Journal of Industrial Engineering 7(1), pp. 16-37.
    [13] Huang, W.; Shu, L.; Woodall, W. H.; and Tsui, K. L. (2014). ”CUSUM Procedures with Probability Control Limits for Monitoring Processes with Variable Sample Sizes”.
    [14] Khoo, M. B. C. (2004). ”A Moving Average Control Chart for Monitoring the Fraction Non-conforming”. Quality and Reliability Engineering International 20(6), pp. 617-635.
    [15] Jiang, W.; Shu, L.; and Tsui, K.-L. (2011). ”Weighted CUSUM Control Charts for Moni- toring Inhomogeneous Poisson Processes with Varying Sample Sizes”. Journal of Quality Tech- nology 43(4), pp. 346-362.
    [16] Lucas, J. M. (1989). ”Control Schemes for Low Count Levels”. Journal of Quality Tech- nology 21(3), pp. 199-201.
    [17] Lucas, J. M., and Crosier, R. B. (1982). ”Fast Initial Response for CUSUM Quality-Control Schemes: Give Your CUSUM a Head Start”. Technometrics 24(3), pp. 199-205.
    [18] Lucas, J. M., and Saccucci, M. S. (1990). ”Exponentially Weighted Moving Average Con- trol Schemes: Properties and Enhancements”. Technometrics 32(1), pp. 1-12.
    [19] Luceno, A. and Puig-Pey, J. (2000). ”Evaluationoftherun-length probability distribution for CUSUM charts: assessing chart performance”. Technometrics 42(4), pp. 411-416.
    [20] Margavio, T. M.; Conerly, M. D.; Woodall, W. H.; and Drake, L. G. (1995). ”Alarm Rates for Quality Control Charts”. Statistics & Probability Letters 24(3), pp. 219-224.
    [21] McCool, J. I. and Motley, T. J. (1998). ”Control Charts applicable when the fraction non- conforming is small”. Journal of Quality Technology 30, pp. 240-247.
    [22] Mei, Y.; Han, S. W.; and Tsui, K-L. (2011). ”Early Detection of a Change in Poisson Rate after Accounting for Population Size Effects”. Statistica Sinica 21, pp. 597-624.
    [23] Montgomery, D. C. (2009). Introduction to Statistical Quality Control, 7th Edition. Hobo- ken, NJ: John Wiley & Sons, Inc.
    [24] Mousavi, S., and Reynolds, M.R., Jr. (2009). ”A CUSUM Chart for Monitoring a Pro- portion with Autocorrelated Binary Observations”. Journal of Quality Technology 41(4), pp. 401-414.
    [25] Nelson, L. S. (1994). ”A control chart for parts-per-million nonconforming items”. Journal of Quality Technology, 26, pp. 239-240.
    [26] Page, E. S. (1954). ”Continuous Inspection Schemes”. Biometrika 41, pp. 100-115.
    [27] Pan, E. S.; Jin, Y.; Wang, S. Y.; and Cang, T. (2012). ”An Integrated EPQ Model based on a Control Chart for an Imperfect Production Process”. nternational Journal of Production Research 50(23), pp. 6999-7001.
    [28] Perry, M. B. and Pignatiello, J. J. (2007). ”Change Point Estima- tion for Monotonically Changing Poisson Rates in SPC”. International Journal of Production Research 45(8), pp. 1791-1813.
    [29] Perry, M. B. and Pignatiello, J. J. (2011). ”Estimating the Time of Step Change with Poisson CUSUM and EWMA Control Charts”. International Journal of Production Research 49(10), pp. 2857-2871.
    [30] Quesenberry, C. P. (1991). ”SPC Q Charts for a Binomial Parameter p: Short or Long Runs”. Journal of Quality Technology 23(3), pp. 239-246.
    [31] Quesenberry, C. P. (1995). ”Geometric Q charts for high quality pro- cesses”. Journal of Quality Technology 27(4), pp. 304-315.
    [32] Quesenberry, C. P. (1995). ”On Properties of Binomial Q Charts for Attributes”. Journal of Quality Technology 27(3), pp. 204-213.
    [33] Radaelli, G. (1994). ”Poisson and Negative Binomial Dynamics for Counted Data under CUSUM-type Charts”. Journal of Applied Statistics 21(5), pp. 347-356.
    [34] Reynolds, M. R., Jr. and Stoumbos, Z. G. (1999). ”A CUSUM Chart for Monitoring a Proportion When Inspecting Continuously”. Journal of Quality Technology 31(1), pp. 87-108. [35] Reynolds, M. R., Jr. and Stoumbos, Z.G. (2000). ”A General Approach to Modeling CUSUM Charts for a Proportion”. IIE Transactions 32(6), pp. 515-535.
    [36] Saniga, E. M.; Davis, D. J.; and Lucas, J. M. (2009). ”Using Shewhart and CUSUM Charts for Diagnosis with Count data in a Vendor Certification Study”. Journal of Quality Technology 41(3), pp. 217-227.
    [37] Sego, L. H.; Woodall, W. H.; and Reynolds, M. R. (2008). ”A Comparison of Surveillance Methods for Small Incidence Rates”. Statistics in Medicine 27(8), pp. 1225-1247.
    [38] Shu, L.; Jiang, W.; and Tsui, K. L. (2008). ”A Weighted Cusum Chart for Detecting Pat- terned Mean Shifts”. Journal of Quality Technology 40(2), pp. 194-213.
    [39] Shu, L.; Jiang, W.; and Tsui, K. L. (2011). ”A Comparison of Weighted CUSUM Procedures that Account for Monotone Changes in Population Size”. Statistics in Medicine 30(7), pp. 725- 741.
    [40] Szarka, J. L. and Woodall, W. H. (2011). ”A Review and Perspec- tive on Surveillance of Bernoulli Processes”. Quality and Reliability Engineering Interna- tional 27(8), pp. 735-752. [41] Woodall, W. H. (1983). ”The distribution of the run length of one-sided CUSUM procedures for continuous random variables”. Technometrics 25(3), pp. 295-301.
    [42] Woodall, W. H. (1997). ”ControlChartsbasedonAttributeData:Bibliography and Review”. Journal of Quality Technology 29, pp. 172-183.
    [43] Wu, Z. and Jiao, J. X. (2008). ”A Control Chart for Monitoring Process Mean Based on Attribute Inspection”. International Journal of Production Research 46, pp. 4331-4347.
    [44] Wu, Z.; Jiao, J. X.; and Liu, Y. (2008). ”A Binomial CUSUM Chart for Detecting Large Shifts in Fraction Nonconforming”. Journal of Applied Statistics 35(11), pp. 1267-1276.
    [45] Wu, Z.; Yeo, S. H.; and Spedding, T. A. (2001). ”A Synthetic Control Chart for Detecting Fraction Nonconforming Increases”. Journal of Quality Technology 33(1), pp. 104-111.
    [46] Yashchin, E. (1989). ”Weighted Cumulative Sum Technique”. Technometrics 31(3), pp. 321-338.
    [47] Yashchin, E. (1993). ”Statistical Control Schemes: Methods, Applications and Generaliza- tions”. International Statistical Review 61(1), pp. 41-66.
    [48] Yeha, A. B.; Mcgratha, R. N.; Sembowerb, M. A.; and Shen, Q. (2008). ”EWMA Control Charts for Monitoring High-yield Processes based on Nontransformed Observations”. Interna- tional Journal of Production Research 46(20), pp. 5679-5699.
    [49] Zhou, Q.; Huang, W.; and Shu, L. (2014). ”A Comparison of Weighted CUSUM Proce- dures for Monitoring Process Proportions with Varying Sample Sizes”. International Journal of Production Research 52(11), pp. 3225-3238.
    描述: 碩士
    國立政治大學
    統計研究所
    102354006
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0102354006
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    400601.pdf362KbAdobe PDF2441檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋