政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/72090
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51723025      Online Users : 650
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/72090


    Title: Random Forests-Based Differential Analysis of Gene Sets for Gene Expression Data.
    Authors: Hsueh, Huey-Miin;Zhou,Da-Wei;Tsai,Chen-An
    薛慧敏;蔡政安
    Contributors: 統計系
    Date: 2012-12
    Issue Date: 2014-12-16 10:39:08 (UTC+8)
    Abstract: InDNAmicroarray studies, gene-set analysis (GSA) has become the focus of gene expression data analysis. GSA utilizes the gene expression profiles of functionally related gene sets in Gene Ontology (GO) categories or priori-defined biological classes to assess the significance of gene sets associated with clinical outcomes or phenotypes. Many statistical approaches have been proposed to determine whether such functionally related gene sets express differentially (enrichment and/or deletion) in variations of phenotypes. However, little attention has been given to the discriminatory power of gene sets and classification of patients.In this study, we propose a method of gene set analysis, in which gene sets are used to develop classifications of patients based on the Random Forest (RF) algorithm. The corresponding empirical p-value of an observed out-of-bag (OOB) error rate of the classifier is introduced to identify differentially expressed gene sets using an adequate resampling method. In addition, we discuss the impacts and correlations of genes within each gene set based on the measures of variable importance in the RF algorithm. Significant classifications are reported and visualized together with the underlying gene sets and their contribution to the phenotypes of interest.Numerical studies using both synthesized data and a series of publicly available gene expression data sets are conducted to evaluate the performance of the proposed methods. Compared with other hypothesis testing approaches, our proposed methods are reliable and successful in identifying enriched gene sets and in discovering the contributions of genes within a gene set. The classification results of identified gene sets can provide an valuable alternative to gene set testing to reveal the unknown, biologically relevant classes of samples or patients.In summary, our proposed method allows one to simultaneously assess the discriminatory ability of gene sets and the importance of genes for interpretation of data in complex biological systems. The classifications of biologically defined gene sets can reveal the underlying interactions of gene sets associated with the phenotypes, and provide an insightful complement to conventional gene set analyses.
    Relation: Gene,518(1), 179-186
    Data Type: article
    DOI link: http://dx.doi.org/http://dx.doi.org/10.1016/j.gene.2012.11.034
    DOI: 10.1016/j.gene.2012.11.034
    Appears in Collections:[Department of Statistics] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    179-186.pdf1165KbAdobe PDF21013View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback