English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51617464      Online Users : 518
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/72089
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/72089


    Title: Incorporating the number of true null hypotheses to improve power in multiple testing: application to gene microarray data
    Authors: Hsueh, Huey-Miin;Tsai, Chen-An;Chen,James J.
    薛慧敏;蔡政安
    Contributors: 統計系
    Date: 2006-06
    Issue Date: 2014-12-16 10:39:05 (UTC+8)
    Abstract: Testing for significance with gene expression data from DNA microarray experiments involves simultaneous comparisons of hundreds or thousands of genes. In common exploratory microarray experiments, most genes are not expected to be differentially expressed. The family-wise error (FWE) rate and false discovery rate (FDR) are two common approaches used to account for multiple hypothesis tests to identify differentially expressed genes. When the number of hypotheses is very large and some null hypotheses are expected to be true, the power of an FWE or FDR procedure can be improved if the number of null hypotheses is known. The mean of differences (MD) of ranked p-values has been proposed to estimate the number of true null hypotheses under the independence model. This article proposes to incorporate the MD estimate into an FWE or FDR approach for gene identification. Simulation results show that the procedure appears to control the FWE and FDR well at the FWE=0.05 and FDR=0.05 significant levels; it exceeds the nominal level for FDR=0.01 when the null hypotheses are highly correlated, a correlation of 0.941. The proposed approach is applied to a public colon tumor data set for illustration.
    Relation: Journal of Statistical Computation and Simulation,77(9),757-767.
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1080/10629360600648651
    DOI: 10.1080/10629360600648651
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML21184View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback