政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/69544
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113656/144643 (79%)
造訪人次 : 51735529      線上人數 : 616
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/69544


    題名: 利率期限結構之預測-類神經網路的應用
    其他題名: Forecasting the Term Structure of Interest Rates: An Application of Neural Network.
    作者: 李桐豪
    貢獻者: 銀行學系
    關鍵詞: 利率;期限結構;遠期利率貼水;現貨利率;類神經網路;史瓦茲資訊準則
    Interest rate;Term structure;Premium of forward rate over spot rate;Spot interest rate;Artificial neural network;Schwarz information criterion
    日期: 1996
    上傳時間: 2014-09-02 09:00:33 (UTC+8)
    摘要: 本研究應用類神經網路以預測我國公債市場上之未來利率與未來的利率期限結構,故內容可分為兩部分:一是探討我國公債利率期限結構中的資訊內涵問題,並將類神經網路模型與時間數列模型作一比較;二是探討我們是否可以使用多輸出類神經網路架構同時預測不同期限的利率。 我們以Swanson & White的模型選擇標準來評估利率期限結構中的資訊內涵,結果發現雖然帶漂移項的隨機走路模型可為常用的Schwarz資訊與一期預測均方差選擇標準選出而成為最佳預測模型,但是若以混淆指數來看,利率期限結構中所含的遠期利率資訊仍然對未來的現貨利率變動方向預測是有所幫助的。不過,我們的估計結果卻也顯示遠期利率的變化率卻無助於未來現貨利率的變化方向。 至於倒傳遞與輻射基底的類神經網路在混淆指數的表現上有百分之六十以上的成功預測率,似乎意味著類神經網路對預測未來利率方向的能力上應仍是優於隨機走路模型。再者,估計結果也顯示預測愈遙遠的現貨利率,類神經網路愈能抓住殘差項的非線性特質而有助於未來利率走向的預測。不過,類神經網路對未來利率水準的預測能力卻是很差的。 最後,當我們以類神經往網路同時估計不同期限現貨利率的預測結果,雖然模型的平均預測誤差值結果尚稱良好,但是預測誤差的標準差仍嫌過高。此外,以類神經網路同時預測未來現貨利率的方向都不較隨機猜測好到那裡。因此,僅是直覺地使用過去的利率作為預測未來利率的架構顯然是不夠的。
    This research project applies the neural network to predict the future direction of interest rates and the future shape of the term structure of interest rates. It has two parts-one is to investigate the information content of the term structure of interest rates and then to compare the results of the neural model with the time series model, the other is to investigate whether we can use neural model with multiple output to predict various interest rates of the term structure simultaneously. Applying the model selection criteria utilized by Swanson & White (1994), we found that although the random walk with a drift is the best model by Schwarz information criterion and the one-step forecast mean squared error criterion, but in terms of confusion index, the future rates implied by the term structure of interest rates are still useful in forecasting the direction of the future spot rate. Our results, however, also indicate that the change in the future rate does not help to predict the change of the direction of the spot rate. In terms of the backpropagation and radial basis neural network, we have over 60% successful prediction rate. It seems neural network model is better than the random walk model in forecasting the future spot rate. Furthermore, the more distant future of the spot rate is, the better the neural network model is in grasping the nonlinearity of the residuals, and the more helpful the neural network model is in predicting the direction of the future spot rate. However, neural network model is not too good in predicting the level of the future spot rate. Finally, when we use the neural network model to predict various interest rates simultaneously, we have a fair mean forecasting error, but the standard deviation of the forecast error is still too high. Furthermore, the prediction of the direction of the future spot rate is no better than a random forecast. It is, therefore, not enough simply using intuitively appealing structure with previously observed term structure of interest rates to predict the future interest rates both in directions and levels.
    關聯: 行政院國家科學委員會
    計畫編號NSC85-2415-H004-019-E7
    資料類型: report
    顯示於類別:[金融學系] 國科會研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML21307檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋