政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/69167
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114014/145046 (79%)
造訪人次 : 52064918      線上人數 : 585
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/69167


    題名: 金融商品波動度最佳預測模型的認定
    其他題名: On the Optimal Forecast Model of Financial Volatility
    作者: 陳松男
    貢獻者: 金融系
    關鍵詞: 金融商品;波動性;隨機漫步;隱含波動性;隨機波動;GARCH模型;EGARCH模型
    Financial commodity;Volatility;Random walk;Implied volatility;Stochastic volatility;GARCH model;EGARCH model
    日期: 1999
    上傳時間: 2014-08-21 17:34:52 (UTC+8)
    摘要: 波動度在金融市場中具有舉足輕重的地位,它不僅是風險控管的重要衡量工具,也是資產評價不可或缺的因素。過去從事資產價格行為的相關研究都假設資產的價格過程是隨機的,且呈對數常態分配、變異數固定。然而實證結果一再顯示:變異數是隨時間而變動的(如Mandelbrot(1963)、Fama(1965))。為預測波動度(或變異數),Eagle(1982)首先提出了ARCH模型,允許預期條件變異數作為過去殘差的函數,因此變異數能隨時間而改變。此後Bollerslev(1986)提出GARCH模型,修正ARCH模型線性遞減遞延結構,將過去的殘差及變異數同時納入條件變異數方程式中。Nelson(1991)則提出EGARCH模型以改進GARCH模型的三大缺點,此模型對具有高度波動性的金融資產提供更成功的另一估計模式。除上列之ARCH-type模型外,Hull and White(1987)提出連續型隨機波動模型(Continuous time stochastic volatility model),用以評價股票選擇權。他們的模型不僅將過去的變異數納入條件變異數的方程式中,同時該條件變異數也會因隨機噪音(random noise)而變動。近年來,上述模型均被廣泛運用在模擬金融資產的波動性,均是相當實用的模型。 本計畫擬以隨機漫步(random walk)、GARCH(1,1)、EGACH(1,1)及隨機波動模型(stochastic volatility),並以1980年至1996年為樣本期間,將五國外匯及股價指數收盤價轉換為報酬率型態,進行不同期間下波動度之預測。以實證結果判斷上述四種模型在預測外匯及股價指數波動度的能力表現,同時,比較上述模型的預測能力。波動度的預測在投資組合的選擇、避險策略、資產管理,以及金融資產的評價上是關鍵性因素。因此,在波動度變化甚巨的台灣股市中,找出具有良好預測波動度能力的模型,是絕對必要的。
    Due to increasing attention to the impact of market risk on asset returns, academic researchers and practicians have developed ways to control risk and methodologies to forecast return volatility. Past researches on stock price behavior usually assumed that stock price behavior follows random walk, and its probability distribution is a normal distribution with a constant variance (or constant volatility). This assumption is in fact in violation of empirical evidence showing that volatility tend to vary over time (e.g., Mandelbrot [1963] and Fama [1965]). To forecast volatility (or variance), Engle (1982) is the first scholar to propose a forecast model, now well-known as ARCH, whose conditional variance is a function of past squared returns residuals. Accordingly, the forecast variance (or volatility) varies over time. Bollerslev (1986) proposed a generalized model, called GARCH, which allows the current conditional variance depends not only on past squared residuals, but also on past conditional variances. However, Nelson (1991) has recently proposed a new model, called EGARCH, which attempts to remove the weakness of the GARCH model. The EGARCH model has been shown to be successful to forecast volatility and to describe successful stock price behavior. In addition, Hull and white (1987) employed a continuous-time stochastic model to develop on option pricing model. Their stochastic volatility model not only admits the past variance, but also depends on random noise of volatility. The above-mentioned models have been widely implemented in practice to simulate and to forecast asset return volatility. This research proposal attempts to forecast exchange rate volatility (five countries) and Taiwan stocks return volatility over the period from 1980 to 1996 by means of four forecast models such as Random Walk, GARCH(1,1), EGARCH and Random Volatility forecast models in and out of sample periods. Volatility forecast is extremely important factor in portfolio choice, hedging strategies, asset management, asset pricing and option pricing. Taiwan stock market has been evidenced to be highly volatile. Consequently, Identifying a good forecast model of volatility is absolutely necessary, especially for the highly volatile Taiwan market.
    關聯: 行政院國家科學委員會
    計畫編號NSC88-2416-H004-015
    資料類型: report
    顯示於類別:[金融學系] 國科會研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML2758檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋