Reference: | Austin, P. C. (2009). Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med, 28(25), 3083-3107. doi: 10.1002/sim.3697 Austin, P. C. (2011a). An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivariate Behav Res, 46(3), 399-424. doi: 10.1080/00273171.2011.568786 Austin, P. C. (2011b). Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm Stat, 10(2), 150-161. doi: 10.1002/pst.433 Conover, W. J. (1998). Practical Nonparametric Statistics: {John Wiley & Sons}. Finney, D. J. (1938). The Distribution of the Ratio of Estimates of the Two Variances in a Sample from a Normal Bi-Variate Population. Biometrika, 30(1/2), 190-192. doi: 10.2307/2332234 Flury, B., Flury, H., & Riedwyl. (1986). Standard Distance in Univariate and Multivariate Analysis. The American statistician, 40(3), 249-251. Hoaglin, D. C. (1983). Understanding robust and exploratory data analysis. Normand, S.-L. T., Landrum, M. B., Guadagnoli, E., Ayanian, J. Z., Ryan, T. J., Cleary, P. D., & McNeil, B. J. (2001). Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores. Journal of clinical epidemiology, 54(4), 387-398. Rosenbaum, P. R., & Rubin, D. B. (1983). The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika, 70(1), 41-55. doi: 10.2307/2335942 Rubin, D. (2001). Using Propensity Scores to Help Design Observational Studies: Application to the Tobacco Litigation. Health Services and Outcomes Research Methodology, 2(3-4), 169-188. doi: 10.1023/A:1020363010465 Seidel, S., Hartl, T., Weber, M., Matterey, S., Paul, A., Riederer, F., ... & Wöber, C. (2009). Quality of sleep, fatigue and daytime sleepiness in migraine a controlled study. Cephalalgia, 29(6), 662-669. |