English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51747256      Online Users : 626
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/67589
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/67589


    Title: 以單因子拉普拉斯關聯結構模型評價合成型抵押擔保債券憑證
    Pricing the Synthetic CDOs for One Factor models in Laplace Distributions
    Authors: 黃信源
    Contributors: 劉惠美
    黃信源
    Keywords: 合成型抵押擔保債券
    單因子關聯結構模型
    NIG分配
    拉普拉斯分配
    Date: 2013
    Issue Date: 2014-07-21 15:36:53 (UTC+8)
    Abstract: 以往在評價合成型抵押擔保債券時,最常使用的方法為應用大樣本一致性資產組合(large homogeneous portfolio, LHP)假設的單因子常態關聯結構,但會造成評價與市場報價間差異過大的問題,且會造成相關性微笑曲線現象。單因子常態關聯結構模型會有上述的問題是因為其缺少厚尾度或偏斜性,因此若能在單因子關聯結構模型中加入具厚尾度或偏斜性的分配,就能改善以上的問題,像是Kalemanova et al.(2007)提出應用LHP假設之單因子NIG關聯結構模型來對合成型CDO進行評價,該模型的評價結果遠優於單因子常態關聯結構模型。本文使用單因子拉普拉斯關聯結構模型對合成型抵押擔保債券作評價,並與其它單因子關聯結構模型的配適結果做比較,探討在評價上單因子拉普拉斯(Laplace)關聯結構模型是否能有其特有的優點與更好的配適效果。由最後的實證分析結果可得到幾個結論,第一,高斯(Gaussian)及拉普拉斯(Laplace)關聯結構模型皆能反應負報價。第二,單因子NIG(2)關聯結構模型是本文使用的關聯模型中配適結果最好的,其在各年度合成型抵押擔保債券商品的絕對誤差和都是最小。第三,對於本文所使用的全部模型,它們在各分券的隱含相關震盪幅度很大,因此這些模型都不符合LHP假設。
    Reference: 1. Dezhong, W. Rachev S.T., Fabozzi F.J. (October
    2006).Pricing Tranches of a CDO and a CDS Index: Resent
    Advances and Future Research. Working paper.
    2. Dezhong W., Rachev S.T., Fabozzi F.J. (November 2006).
    Pricing of Credit Default Index Swap Tranches with One-
    Factor Heavy-Tailed Copula Models. Working paper.
    3. Kalemanove, A., Schmid, B., and Werner, R
    (spring2007). “The Normal Inverse Gaussian Distribution
    for Synthetic CDO pricing.” The Journal of Derivatives,
    Vol. 14, pp. 80-93.
    4. Karlis, D. and Papadimitriou, A. (2004). Inference for
    the Multivariate Normal Inverse Gaussian Model. Working
    paper
    5. Hull, J. and White, A. (winter 2004) “Valuation of a
    CDO and an n-th to Default CDS without Monte Carlo
    Simulation.” The Journal of Derivatives, Vol. 12, pp. 8- 23.
    6. Li, D.X. (April 2000). On Default Correlation: A Copula
    Function Approach. Working Paper.
    7. D. O’Kane and L. Schloegl., M. (2001). Modeling Credit:
    Theory and Practice. Quantitative Credit Research,
    Lehman Brothers.
    8. Black, Fischer and John C. Cox, "Valuing Corporate
    Securities: Some Effects of Bond Indenture Provisions",
    Journal of Finance, Vol. 31, No. 2, (May 1976), pp. 351-
    367.
    9. Merton, R. C (1974) . On the Pricing of Corporate Debt:
    The Risk Structure of Interest Rates, Journal of
    Finance, 29, pp. 449-470.
    10. O.E. Barndor®-Nielsen. (1978). Hyperbolic distributions
    and distributions on hyperbolae. Scandinavian. Journal
    of statistics, 5, 151-157.
    11. Karlis. D. (2000). An EM type algorithm for maximum
    likelihood estimation of the normal–inverse Gaussian
    distribution. Statistic & Probability Letters , 57,
    43-52.
    12. 林聖航(民101)。探討合成型抵押擔保債券憑證之評價。國立政治大學統
    計學系碩士論文,台北市。
    13. 邱嬿燁 (民 97) 。探討單因子複合分配關聯結構模型之擔保債權憑證之
    評價 。國立政治大學統計學系碩士論文,台北市。
    Description: 碩士
    國立政治大學
    統計研究所
    101354021
    102
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0101354021
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    402101.pdf1239KbAdobe PDF2144View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback