English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113869/144892 (79%)
Visitors : 51896648      Online Users : 45
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/67588
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/67588


    Title: 運用充分資料縮減法於基因組分析
    Application of the Sufficient Dimension Reduction to Gene Set Analysis
    Authors: 蔡志旻
    Tsai, Chih Min
    Contributors: 薛慧敏
    蔡志旻
    Tsai, Chih Min
    Keywords: 外顯特徵
    基因組分析
    切片平均變異數估計法
    邊際維度檢定法
    Date: 2013
    Issue Date: 2014-07-21 15:36:41 (UTC+8)
    Abstract: 生物現象多是由許多基因共同作用產生的結果,以基因組分析方法探討外顯特徵變數與基因組的相關性將更能幫助研究人員了解生物體的作用機制。目前已發展的基因組分析方法大多是針對離散型態的外顯特徵變數,在臨床醫學上,很多疾病的外顯特徵為連續型變數。本研究之目的即為發展運用在連續型外顯特徵變數的基因組分析方法。本文將考慮切片平均變異數估計法進行充分維度縮減的方法,原先被用來決定原始資料被縮減的程度之邊際維度檢定法將被運用於基因組分析方法。除了原有的邊際維度檢定法之外,我們另提出一改良的邊際維度檢定法,並以排列重抽法獲得這兩種檢定方法之排列顯著值。本文將透過電腦模擬以及實例分析來評估兩種邊際維度檢定法,同時也將列入Dinu等學者(2013)所發展的線性組合檢定法之結果以作為比較。
    Reference: Becker, C. and Gather, U. (2007) A note on the choice of the number of slices in sliced inverse regression. Technical Report, 475.

    Biernacka, J.M., Geske, J., Jenkins, G.D., Colby, C., Rider, D.N., Karpyak, V.M., Choi, D. and Fridley, B.L. (2012) Genome-wide gene-set analysis for identification of pathways associated with alcohol dependence. International Journal of Neuropsychopharmacology, 16, 271-278.

    Chang, S., Hursting, S.D., Contois, J.H., Strom, S.S., Yamamura, Y., Babaian, R.J., Troncoso, P., Scardino, P.T., Wheeler, T.M., Amos, C.I. and Spitz, M.R. (2001) Leptin and prostate cancer. The Prostate, 46, 62-67.

    Chen, J., Pamuklar, Z., Spagnoli, A. and Torquati, A. (2012) Serum leptin levels are inversely correlated with omental gene expression of adiponectin and markedly decreased after gastric bypass surgery. Surg Endosc, 26, 1476-1480.

    Cook, R.D. (1996) Graphics for regression with a binary response. Journal of the American Statistical Association, 91, 983-992.

    Cook, R.D. and Lee, H. (1999) Dimension reduction in binary response regression. Journal of the American Statistical Association, 94, 1187-1200.
    Cook, R.D. and Weisberg, S. (1991) Discussion of ”Sliced Inverse Regression for Dimension Reduction.” Journal of the American Statistical Association, 86, 328-332.

    Dinu, I., Potter, J.D., Mueller, T., Liu, Q., Adewale, A.J., Jhangri, G.S., Einecke, G., Famulski, K.S., Halloran, P. and Yasui, Y. (2007) Improving gene set analysis of microarray data by SAM-GS. Bioinformatics, 8, 242.

    Dinu, I., Wang, X., Kelemen, L.E., Vatanpour, S. and Pyne, S. (2013) Linear combination test for gene set analysis of a continuous phenotype. BMC Bioinformatics, 14, 212.

    Eid, M.A., Kumar, M.V., Iczkowski, K.A., Bostwick, D.G. and Tindall, D.J. (1998) Expression of early growth response genes in human prostate cancer. Cancer Res, 58, 2461-2468.

    Gao, T., Han, Y., Yu, L., Ao, S., Li, Z. and Ji, J. (2014) CCNA2 is a prognostic biomarker for ER+ breast cancer and tamoxifen resistance. PLOS ONE, 9, 3.

    Hsueh, H.M., Zhou, D.W., Tsai, C.A. (2013) Random forests-based differential analysis of gene sets for gene expression data. Gene, 518, 179-186.

    Li, K.C. (1991) Sliced Inverse Regression for Dimension Reduction. Journal of the American Statistical Association, 86, 316-327.

    Murphy, K.P. (2007) Conjugate bayesian analysis of the gaussian distribution. Technical report, University of British Columbia.

    Riedel, K.S. (1991) A Sherman Morrison Woodbury identity for rank augmenting matrices with application to centering. SIAM J. MAT. ANAL., 12(1), 80-85.

    Scha ̈fer, J. and Strimmer, K. (2005) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4, 1.

    Shao, Y. and Cook, R.D. and Weisberg, S. (2007) Marginal tests with sliced average variance estimation. Biometrika, 94, 285-296.

    Singh, S.K., Grifson, J.J., Mavuduru, R.S., Agarwal, M.M., Mandal, A.K. and Jha, V. (2010) Serum leptin: a marker of prostate cancer irrespective of obesity. Cancer Biomarkers, 7, 11-15.

    Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S. and Mesirov, J.P. (2005) Gene set enrichment analysis:a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102, 15545-15550.

    Pang, H., Lin, A., Holford, M., Enerson, B.E., Lu, B., Lawton, M.P., Floyd, E. and Zhao, H. (2006) Pathway analysis using random forests classification and regression. Bioinformatics, 22, 2028-2036.

    Terrasi, M., Riolfi, M., Ferla, R., Scolaro, L., Micciolo, R., Guidi, M. and Surmacz, E. (2009) Leptin and its receptor are overexpressed in brain tumors and correlate with the degree of malignancy. International Society of Neuropathology, 20(2), 481-489.
    Tusher, V.G., Tibshirani, R. and Chu, G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America, 98, 5116-5121.

    Wang, X., Pyne, S. and Dinu, I. (2014) Gene set enrichment analysis for multiple continuous phenotypes. AIMSCS Research Report, No.: RR2014-05.

    Wrann, C.D., Eguchi, J., Bozec, A., Xu, Z., Mikkelsen, T., Gimble, J., Nave, H., Wagner, E.F., Ong, S.E., Rosen, E.D. (2012) FOSL2 promotes leptin gene expression in human and mouse adipocytes. J Clin Invest, 122(3), 1010-1021.

    Yan, X. and Sun, F. (2008) Testing gene set enrichment for subset of genes: Sub-GSE. BMC Bioinformatics, 9, 362.

    Ye, C. and Eskin, E. (2007) Discovering tightly regulated and differentially expressed gene sets in whole genome expression data. Bioinformatics, 23 (2), 84-90.

    徐碩亨、薛慧敏 (2013) Application of sufficient dimension reduction to global test.國立政治大學統計學系碩士論文,台北市。
    Description: 碩士
    國立政治大學
    統計研究所
    101354015
    102
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0101354015
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    401501.pdf1644KbAdobe PDF2220View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback