English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52189128      Online Users : 890
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/67337
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/67337


    Title: 指數失敗時間模式之條件D-最適設計
    Conditional D-optimal Design for Exponential Failure Time Model
    Authors: 葉湘怡
    Yeh, Hsiang Yi
    Contributors: 丁兆平
    陳麗霞

    Ting, Chao Ping
    Chen, Li Shya

    葉湘怡
    Yeh, Hsiang Yi
    Keywords: 指數失敗時間
    D-最適設計
    穩健分析
    穩健效率值
    穩健設計
    Exponential failure time
    D-optimal design
    robustness
    efficiency
    robust design
    Date: 2013
    Issue Date: 2014-07-07 11:14:07 (UTC+8)
    Abstract: 本論文將最適設計理論應用於指數失敗時間,其期望值之倒數與解釋變數間呈線性關係,且模型中含有兩個解釋變數,一為不可控變數,另一為可控變數。由於在決定最適設計時,實驗單位進入研究的時間及其不可控變數之值均為未知,故必須對此二未知變數給予分配,並將該單位在研究期間內為失敗或設限的可能性納入考慮,方能在各實驗單位進入研究時提供適當之決策。為增進參數估計之效率,本論文採用D-準則,以決定出建立在進入時間及不可控變數之下的條件D-最適設計。本論文並以臨床醫學的例子,在參數值的不同設定下進行電腦計算,除分別找到對應之條件D-最適設計,且進行參數的穩健分析。在本論文考慮的各種情況之下,所得到的穩健效率值均可說明此條件D-最適設計為穩健設計。
    Optimal design under the survival analysis models has rarely been considered in the literature. In this article, exponential failure time is assumed and the expected failure time which is inversely related to two explanatory variables, one is controlled variable and the other is uncontrolled variable, through a linear function is considered. Since the time each experimental unit entering into the study is not known, and the corresponding uncontrolled variable is also unknown, assumptions on the distributions of the entering time and the uncontrolled variable are made in order to find optimal designs. Upon entering into the study, an “optimal” decision is made on the experimental unit, and whether the unit will fail or be censored is also considered. To improve efficiency of parameter estimation, D-optimal criterion is employed, and conditional D-optimal designs are found. Under different setting of values of the parameters and with the help of computer programming, conditional D-optimal designs are found and are listed for a clinical medicine problem. Design robustness on unknown parameters is also investigated.
    Reference: Cook, R.D., and Thibodeau, L.A. (1980). Marginally Restricted D-Optimal Designs. Journal of the American Statistical Association 75, 366-371.
    Garcet-Rodríguez, S., López-Fidalgo, J., and Martín-Martín, R. (2008). Some Complexities in Optimal Experimental Designs Introduced by Real Life Problems. Tatra Mountains Mathematical Publications 39, 135-143.
    Harville, D.A. (1974). Nearly Optimal Allocation of Experimental Units Using Observed Covariate Values. Technometrics 16, 589-599.
    Huang, M.N.L., and Hsu, M.C. (1993). Marginally Restricted Linear-Optimal Designs. Journal of Statistical Planning and Inference 35, 251-266.
    Huang, M.N.L., and Chang, H.F. (1995). Marginally Restricted Constrained Optimal Designs. The Indian Journal of Statistics 57, 128-141.
    Lee, C.M.-S. (1988). Constrained Optimal Designs. Journal of Statistical Planning and Inference 18, 377-389.
    López-Fidalgo, J., and Garcet-Rodríguez, S. (2004). Optimal Experimental Designs when Some Independent Variables are Not Subject to Control. Journal of the American Statistical Association 99, 1190-1199.
    López-Fidalgo, J., Rivas-López, M.J., and del Campo, R. (2009). Optimal Designs for Cox Regression. Statistica Neerlandica 63, 135-148.
    López-Fidalgo, J., and Garcet-Rodríguez, S. (2011). Optimal Experimental Designs when An Independent Variable is Potentially Censored. Statistics 45, 143-154.
    López-Fidalgo, J., and Rivas-López, M.J. (2014). Optimal Experimental Designs for Partial Likelihood Information. Computational Statistics and Data Analysis 71, 859-867.
    Martín-Martín, R., Torsney, B., and López-Fidalgo, J. (2007). Construction of Marginally and Conditionally Restricted Designs Using Multiplicative Algorithms. Computational Statistics and Data Analysis 51, 5547-5561.
    Nachtsheim, C.J. (1989). On the Design of Experiments in the Presence of Fix Covariates. Journal of Statistical Planning and Inference 22, 203-212.
    Varela, G., Cordovilla, R., Jiménez, M.F., and Novoa, N. (2001). Utility of Standardized Exercise Oximetry to Predict Cardiopulmonary Morbidity after Lung Resection. European Journal of Cardio-thoracic Surgery 19, 351-354.
    Description: 碩士
    國立政治大學
    統計研究所
    98354016
    102
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0983540161
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    016101.pdf1019KbAdobe PDF2168View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback