政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/66468
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51736827      Online Users : 603
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/66468


    Title: 狀態相依跳躍風險與美式選擇權評價:黃金期貨市場之實證研究
    State-dependent jump risks and American option pricing: an empirical study of the gold futures market
    Authors: 連育民
    Lian, Yu Min
    Contributors: 廖四郎
    Liao, Szu Lang
    連育民
    Lian, Yu Min
    Keywords: 美式黃金期貨選擇權
    狀態轉換跳躍擴散過程
    Merton測度
    Esscher轉換
    最小平方蒙地卡羅法
    American gold futures option
    Regime-switching jump-diffusion process
    Merton measure
    Esscher transform
    Least-squares Monte Carlo method
    Date: 2013
    Issue Date: 2014-06-04 14:41:45 (UTC+8)
    Abstract: 本文實證探討黃金期貨報酬率的特性並在標的黃金期貨價格遵循狀態轉換跳躍擴散過程時實現美式選擇權之評價。在這樣的動態過程下,跳躍事件被一個複合普瓦松過程與對數常態跳躍振幅所描述,以及狀態轉換到達強度是由一個其狀態代表經濟狀態的隱藏馬可夫鏈所捕捉。考量不同的跳躍風險假設,我們使用Merton測度與Esscher轉換推導出在一個不完全市場設定下的風險中立黃金期貨價格動態過程。為了達到所需的精確度,最小平方蒙地卡羅法被用來近似美式黃金期貨選擇權的價值。基於實際市場資料,我們提供實證與數值結果來說明這個動態模型的優點。
    This dissertation empirically investigates the characteristics of gold futures returns and achieves the valuation of American-style options when the underlying gold futures price follows a regime-switching jump-diffusion process. Under such dynamics, the jump events are described as a compound Poisson process with a log-normal jump amplitude, and the regime-switching arrival intensity is captured by a hidden Markov chain whose states represent the economic states. Considering the different jump risk assumptions, we use the Merton measure and Esscher transform to derive risk-neutral gold futures price dynamics under an incomplete market setting. To achieve a desired accuracy level, the least-squares Monte Carlo method is used to approximate the values of American gold futures options. Our empirical and numerical results based on actual market data are provided to illustrate the advantages of this dynamic model.
    Reference: Amin, K. I., 1993. Jump diffusion option valuation in discrete time. The Journal of Finance 48, 1833–1863.
    Ball, C. A., Torous, W. N., 1983. A simplified jump process for common stock returns. Journal of Financial and Quantitative Analysis 18, 53–65.
    Ball, C. A., Torous, W. N., Tschoegl, A. E., 1985. An empirical investigation of the EOE gold options market. Journal of Banking and Finance 9, 101–113.
    Baur, D. G., Lucey, B. M., 2010. Is gold a hedge or a safe haven? An analysis of stocks, bonds and gold. Financial Review 45, 217–229.
    Baur, D. G., McDermott, T. K., 2010. Is gold a safe haven? International evidence. Journal of Banking and Finance 34, 1886–1898.
    Beckers, S., 1981. A note on estimating the parameters of the diffusion jump model of stock returns. Journal of Financial and Quantitative Analysis 16, 127–140.
    Beckers, S., 1984. On the efficiency of the gold options market. Journal of Banking and Finance 8, 459–470.
    Boyle, P., Broadie, M., Glasserman, P., 1997. Monte Carlo methods for security pricing. Journal of Economic Dynamics and Control 21, 1267–1321.
    Brennan, M., Schwartz, E., 1977. The valuation of American put options. Journal of Finance 32, 449–462.
    Capie, F., Mills, T. C., Wood, G., 2005. Gold as a hedge against the dollar. Journal of International Financial Markets, Institutions and Money 15, 343–352.
    Carr, P., Geman, H., Madan, D., Yor, M., 2002. The fine structure of asset returns: an empirical investigation. Journal of Business 75, 305–332.
    Chan, W. H., Maheu, J. M., 2002. Conditional jump dynamics in stock market returns. Journal of Business & Economic Statistics 20, 377–389.
    Chang, C., Fuh, C. D., Lin, S. K., 2013. A tale of two regimes: theory and empirical evidence for a Markov-modulated jump diffusion model of equity returns and derivative pricing implications. Journal of Banking and Finance 37, 3204–3217.
    Cox, J. C., Ross, S. A., Rubinstein, M., 1979. Option pricing: a simplified approach. Journal of Financial Economics 7, 229–263.
    Duan, J. C., Ritchken, P., Sun, Z., 2006. Approximating GARCH-jump models, jump-diffusion processes, and option pricing. Mathematical Finance 16, 21–52.
    Elliott, R. J., Chan, L., Siu, T. K., 2005. Option pricing and Esscher transform under regime switching. Annals of Finance 1, 423–432.
    Elliott, R. J., Osakwe, C.-J. U., 2006. Option pricing for pure jump processes with Markov switching compensators. Finance and Stochastics 10, 250–275.
    Elliott, R. J., Siu, T. K., Chan, L., Lau, J. W., 2007. Pricing options under a generalized Markov-modulated jump-diffusion model. Stochastic Analysis and Applications 25, 821–843.
    Elliott, R. J., Siu, T. K., 2011. A risk-based approach for pricing American options under a generalized Markov regime-switching model. Quantitative Finance 11, 1633–1646.
    Eraker, B., Johannes, M., Polson, N., 2003. The impact of jumps in volatility and returns. Journal of Finance 58, 1269–1300.
    Eraker, B., 2004. Do stock market and volatility jump? Reconciling evidence from spot and option prices. Journal of Finance 59, 1367–1404.
    Gerber, H. U., Shiu, E. S. W., 1994. Option pricing by Esscher transforms (with discussions). Transactions of Society of Actuaries 46, 99–191.
    Gerber, H. U., Shiu, E. S. W., 1996. Actuarial bridges to dynamic hedging and option pricing. Insurance: Mathematics and Economics 18, 183–218.
    Hull, J., White, A., 1990. Valuing derivative securities using the explicit finite difference method. Journal of Financial and Quantitative Analysis 25, 87–100.
    Khalaf, L., Saphores, J.-D., Bilodeau, J.-F., 2003. Simulation-based exact jump tests in models with conditional heteroskedasticity. Journal of Economic Dynamics and Control 28, 531–553.
    Kou, S. G., 2002. A jump-diffusion model for option pricing. Management Science 48, 1086–1101.
    Lange, K., 1995a. A gradient algorithm locally equivalent to the EM algorithm. Journal of the Royal Statistical Society 57, 425–437.
    Lange, K., 1995b. A quasi-Newton acceleration of the EM algorithm. Statistica Sinica 5, 1–18.
    Last, G., Brandt, A., 1995. Marked point processes on the real line: the dynamic approach. Springer-Verlag, New York.
    Longstaff, F. A., Schwartz, E. S., 2001. Valuing American options by simulation: a simple least-squares approach. Review of Financial Studies 14, 113–147.
    Maheu, J. M., McCurdy, T. H., 2004. News arrival, jump dynamics and volatility components for individual stock returns. Journal of Finance 59, 755–793.
    McCown, J. R., Zimmerman, J. R., 2006. Is gold a zero-beta asset? Analysis of the investment potential of precious metals. Unpublished working paper, Oklahoma City University. Available from http://ssrn.com/abstract=920496.
    McCown, J. R., Zimmerman, J. R., 2007. Analysis of the investment potential and inflation-hedging ability of precious metals. Unpublished working paper, Oklahoma City University. Available from http://ssrn.com/abstract=1002966.
    Meng, X. L., Rubin, D. B., 1991. Using EM to obtain asymptotic variance-covariance matrices: the SEM algorithm. Journal of the American Statistical Association 86, 899–909.
    Merton, R. C., 1976. Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics 3, 125–144.
    Ogden, J. P., Tucker, A. L., Vines, T. W., 1990. Arbitraging American gold spot and futures options. Financial Review 25, 577–592.
    Reboredo, J. C., 2013. Is gold a safe haven or a hedge for the US dollar? Implications for risk management. Journal of Banking and Finance 37, 2665–2676.
    Zagaglia, P., Marzo, M., 2013. Gold and the U.S. dollar: tales from the turmoil. Quantitative Finance 13, 571–582.
    Description: 博士
    國立政治大學
    金融研究所
    95352506
    102
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0095352506
    Data Type: thesis
    Appears in Collections:[Department of Money and Banking] Theses

    Files in This Item:

    File SizeFormat
    250601.pdf525KbAdobe PDF2158View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback