English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51630466      Online Users : 549
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/60449
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/60449


    Title: 混合分配下之估計模型鑑別力比較
    Comparison of Estimating Discriminatory Power under Mixed Model
    Authors: 廖雅薇
    Contributors: 劉惠美
    陳麗霞

    廖雅薇
    Keywords: 模型鑑別力
    AUC

    EM演算法
    偏斜常態分配
    Discrimination
    AUC
    Kerne
    EM
    Skewed normal distribuion
    Date: 2009
    Issue Date: 2013-09-05 15:14:20 (UTC+8)
    Abstract: 銀行在評分模型建置完成後需進行驗證工作,以瞭解評分模型是否能有效評出客戶的風險層級,穩健地估計區別鑑別力指標為驗證工作中的重點。在先前的文獻中假設正常授信戶與違約戶分數分配為常態分配。但在實際資料中,分配未必定為常態。因此本文接著探討在正常授信戶與違約授信戶之分配為混合分配,即兩分數分配為偏斜常態分配下,何種方法可以對於估計AUC具有較高的穩定性。本文比較五種估計AUC的方法,分別為常態核,經驗分配,曼惠尼近似,最大摡似法和EM演算法。模擬結果呈現(1)投信戶組合分配為兩常態分配下,最大摡似法在大部分違約率下都可以得到較窄的信賴區間。(2)組合分配為一常態與一偏斜常態及兩偏斜常態分配下,EM演算法在大部分情況有較窄的信賴區間,其中在兩偏斜常態分配下,表現更佳。(3)曼惠尼近似建構的信賴區間寬度最大,代表曼惠尼近似是較保守的估計方法。
    Banks face discrimination after constructing the rating systems to figure out whether the systems can discriminate defaulting and non-defaulting borrowers. Literature assumed the two score distribuion are normal distributed. However, the real data may not be normal distribuions. We assum the two score distribuions are skewed normal distribuions to discuss which method has more robustness to estimate the AUC value.Under skewed distribution, we propose EM algorithm to estimate the population parametric. If used properly, information about the population properties may be used to get better accuracy of estimation the AUC value.Numerical results show the EM algorithm method , comparing with other methods, has robustness in detect the rating systems have discirmatory power.
    Reference: 邱嬿燁(2008)"探討單因子複合分配關聯結構模型之擔保債權憑證之評價",國立政治大學碩士論文
    Arellano-Valle, R.B., Gomez, H.W., and Quintana, F.A. (2004), “A new class of skew-normal distributions”, Communications in Statistics-Theory and Methods,33(7),1465-1480.
    Azzalini,A.(2005), “The skew-normal distribution and related multivariate families”,Scandinavian Journal of Statistics, 32(2),159-188.
    Davison, A.C. and Hinkley, DV (1997), Bootstrap methods and their application, Cambridge Univ Pr.
    Engelmann, B., Hayden, E., and Tasche, D. (2003a), “Measuring the discriminative power of rating systems”, Deutsche BundesBank, 1-24.
    ------(2003b), “Testing rating accuracy”, Risk, 16(1), 82-86.
    Genton, Marc G. (2005), “Discussion of The Skew-normal”, Scandinavian Journal of Statistics, 32, 189-198.
    Gonzalez-Farias, G.,Dominguez-Molina, A., and Gupta, A.K. (2004), “Additive properties of skew normal random vectors”, Journal of Statistical Planning and Inference, 126(2), 521-534.
    Hosmer, D.W. and Lemeshow, S. (2000), Applied logistic regression, Wiley-Interscience.
    Pagan and Ullah, A. (1999), Nonparametric econometrics, Cambridge University Press.
    Satchell and Xia., W. (2008), Analytic models of the ROC curve: Applications to credit rating model validation. In G. Christodoulakis and S. Satchell, editors, The Analytics of Risk Model Validation, Academic Press.
    Tasche, Dirk (2005), “Studies on the Validation of Internal Rating Systems(revised)”, Quantitative Finance Papers.
    -----(2009), “Estimating discriminatory power and PD curves when the number of defaults is small”, Bank for International Settlements.
    Vidakovic, Brani (2003), “EM Algorithm and Mictures.”, Citeseer.
    Description: 碩士
    國立政治大學
    統計研究所
    97354010
    98
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0973540101
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    010101.pdf1208KbAdobe PDF2420View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback