English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52189651      Online Users : 307
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/60440
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/60440


    Title: 網路評比資料之統計分析
    Statistical analysis of online rating data
    Authors: 張孫浩
    Contributors: 翁久幸
    Weng, Chui Hsing
    張孫浩
    Keywords: 線上評分
    推薦系統
    IRT模型法
    相關係數法
    矩陣分解
    online rating
    recommender system
    IRT model-based method
    method, correlation-coefficient method
    matrix factorization
    Date: 2010
    Issue Date: 2013-09-05 15:12:30 (UTC+8)
    Abstract: 隨著網路的發達,各式各樣的資訊和商品也在網路上充斥著,使用者尋找資訊或是上網購物時,有的網站有推薦系統(recommender system)能提供使用者相關資訊或商品。若推薦系統能夠讓消費者所搜尋的相關資訊或商品能夠符合他們的習性時,便能讓消費者增加對系統的信賴程度,因此系統是否能準確預測出使用者的偏好就成為一個重要的課題。本研究使用兩筆資料,並以相關研究的三篇文獻進行分析和比較。這三篇文獻分別為IRT模型法(IRT model-based method)、相關係數法(correlation-coefficient method)、以及矩陣分解法(matrix factorization)。

    在經過一連串的實證分析後,歸納出以下結論:
    1. 模型法在預測方面雖然精確度不如其他兩種方法來的好,但是模型有解釋變數之間的關係以及預測機率的圖表展示,因此這個方法仍有存在的價值。
    2. 相關係數法容易因為評分稀疏性的問題而無法預測,建議可以搭配內容式推薦系統的運作方式協助推薦。
    3. 矩陣分解法在預測上雖然比IRT模型法還好,但分量的數字只是一個最佳化的結果,實際上無法解釋這些分量和數字的意義。
    With the growth of the internet, websites are full of a variety of information and products. When users find the information or surf the internet to shopping, some websites provide users recommender system to find with which related. Hence, whether the recommender system can predict the users` preference is an important topic. This study used two data,which are "Mondo" and "MovieLens", and we used three related references to analyze and compare them. The three references are following: IRT model-based method, Correlation-coefficient method, and Matrix factorization.

    After the data analysis, we get the following conclusions:
    1. IRT model-based method is worse then other methods in predicting, but it can explain the relationship of variables and display the graph of predicting probabilities. Hence this method still has it`s value.
    2. Correlation-coefficient method is hard to predict because of sparsity. We can connect it with content filtering approach.
    3. Although matrix factorization is better then IRT model-based method in predicting, the vectors is a result of optimization. It may be hard to explain the meaning of the vectors.
    Reference: Agresti, A. ,"An Introduction to Catogerical Data Analysis," Wiley-Introduction.
    Cheung, K. , Tsui K. ,and Liu J. (2004), "Extended Latent Class Models for Collaborative Recommendation," IEEE Transactions on Systems, Man & Cybernetics: Part A, Jan 2004, Vol.34, Issue 1, pp. 143-148.
    Conry, D. C. (2009), "Recommender Systems for the Conference Paper Assignment Problem," thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University.
    Ho, D. E. ,and Quinn, K. M. (2008), "Improving the Presentation and Interpretation of Online Ratings Data with Model-Based Figures," The American Statistician, Nov 2008, Vol.62, Issue 4, pp. 279-288.
    Kagie, M. ,Loos, M. ,and Wezel, M. (2009), "Including item characteristics in the probabilistic latent semantic analysis model for collaborative filtering," AI Communications, 22, 2009, pp. 249-265.
    Konstan, J. A. ,Miller, B. N. ,Maltz, D. ,Herlocker, J. L. ,Gordon, L. R.,and Riedl, J. (1997), "GroupLens: Applying Collaborative Filtering to Usenet News," Comminications of the ACM, Mar1997, Vol.40, Issue 3, pp. 77-87.
    Koren, K. ,Bell, R. ,and Volinsky, C. (2009), "Matrix Factorization Techniques for Recommender Systems," IEEE Computer Society, Aug 2009, Vol.42, Issue 8, pp. 42-49.
    Koren, K. (2010), "Collaborative Filtering with Temporal Dynamics," Comminications of the ACM, Apr 2010, Vol.53, Issue 4, pp. 89-98.
    Li, W. ,Lee, K. ,and Leung, K. (2006), "Generalized Regularized Least-Squares Learning with Predefined Features in a Hilbert Space," Neural Information Processing Systems - NIPS, pp. 881-888
    Resnick, P. , Iacovou, N. ,Suchak, M. ,Bergstrom, P. and Riedl, J. (1994), "GroupLens: An Open Architecture for Collaborative Filtering of Netnews," Proceedings of ACM 1994 Conference on Computer Supported Cooperative Work, Chapel Hill, pp. 175-186.
    Weisberg, S. "Applied linear regression," Wiley-Introduction.
    Williamson, S. and Ghahramani, Z. (2008),"Probabilistic Models for Data Combination in Recommender Systems," Probabilistic models for data combination in recommender systems In: Learning from Multiple Sources Workshop, 8-12 December 2008, Vancouver and Whistler, British Columbia, Canada.
    Zhou, H. ,and Lange, K. (2009), "Rating Movies and Rating the Raters Who Rate Them," The American Statistician, pp. 297-307.
    馮文正 (2001),合作式網站推薦系統,國立交通大學資訊科學所碩士論文
    吳肇銘 (2004),以消費者購買決策為基礎之適性化推薦系統,中原大學資訊管理學系碩士論文
    Amazon. Retrieved Nov, 2010, from http://www.amazon.com
    Mondo Times. Retrieved Nov, 2010, from http:///www.mondotimes.com
    Netflix. Retrieved Nov, 2010, from http:///www.netflix.com
    PC magazine. Retrieved Nov, 2010, from http://www.pcmag.com
    TiVo台灣網站. Retrieved Nov, 2010, from http://www.tgc-taiwan.com.tw/index.php
    Description: 碩士
    國立政治大學
    統計研究所
    98354010
    99
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0098354010
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    401001.pdf1427KbAdobe PDF2634View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback