English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51832566      Online Users : 534
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/60437
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/60437


    Title: 以無母數方法來檢測變異
    A nonparametric test for detecting increasing variability
    Authors: 鄭雅文
    Cheng, Ya Wen
    Contributors: 黃子銘
    Huang, Tzee Ming
    鄭雅文
    Cheng, Ya Wen
    Keywords: 無母數檢定
    變異
    nonparametric test
    variability
    Date: 2010
    Issue Date: 2013-09-05 15:11:55 (UTC+8)
    Abstract: 當我們探討的是兩組樣本的變異是否有所差異時,常見的方法有以ANOVA 為
    基礎的檢定與秩檢定,傳統的秩檢定需要假設兩母體具有相同的中位數或知道
    其差異。本研究採用Moses (1963) 提出的rank-like 檢定方法,此方法在處理兩組樣本的變異問題時,優點是不需要估計任何中心參數,也不需要假設母體中心參數相同,在資料偏態的情況下也表現得很穩健,我們試圖在樣本數極小的情況下對此方法作修正,將此檢定方法與以ANOVA 為基礎的檢定和秩檢定進行模擬比較,以能夠良好的控制型一誤差與檢定力作為評斷標準。由模擬的結果可得知,rank-like 檢定方法與修正後的方法在不同的分配下皆表現的穩健而修正後的方法特別適用於小樣本的情形。
    We consider the problem of detecting variability change in the two-sample case.Several classical variability tests are investigated, including the ANOVA based tests and the rank tests. Traditional two-sample rank tests assume that the location parameters for both samples are identical or of known difference. In this thesis, a modified version of the distribution-free rank-like test proposed by Moses (1963) is proposed. Moses’s test has several advantages. It does not require location parameter estimation, is applicable without assuming that location parameter are identical, and is robust for skewed data. However, Moses’s test has no power when each of the two samples has size 5 or less. The modified version of Moses’s test proposed in this thesis has some power when the sample sizes are small. Comparative
    simulation results are presented. According to these results, both Moses’s test and the proposed test are robust under all conditions, and the proposed test
    works better when the sample sizes are small.
    Reference: [1] 洪志真. 監控製程變異之SPC 方法(II). 2003.
    [2] M.S. Bartlett. Properties of sufficiency and statistical tests. Proceedings of
    the Royal Society of London. Series A-Mathematical and Physical Sciences,
    160(901):268, 1937.
    [3] R.C. Blair and G.L. Thompson. A distribution-free rank-like test for scale
    with unequal population locations. Communications in Statistics: Simulation
    and Computation, 21:353–371, 1992.
    [4] G.E.P. Box. Non-normality and tests on variances. Biometrika, 40(3/4):318–
    335, 1953.
    [5] M.B. Brown and A.B. Forsythe. Robust tests for the equality of variances.
    Journal of the American Statistical Association, 69:364–367, 1974.
    [6] Y.L. Chen. A Test for Two-Sample Problem Based on Sample Spacings.
    Tamsui Oxford Journal of Mathematical Sciences, 20(2):267–278, 2004.
    [7] H.B. Mann and D.R. Whitney. On a test of whether one of two random
    variables is stochastically larger than the other. The Annals of Mathematical
    Statistics, 18(1):50–60, 1947.
    [8] L.E. Moses. Rank tests of dispersion. The Annals of Mathematical Statistics,
    34:973–983, 1963.
    [9] R.G. O’Brien. A general ANOVA method for robust tests of additive models
    for variances. Journal of the American Statistical Association, 74:877–880,
    1979.
    [10] S.F. Olejnik and J. Algina. Type I error rates and power estimates of selected
    parametric and nonparametric tests of scale. Journal of Educational
    Statistics, 12:45–61, 1987.
    [11] P.H. Ramsey. Testing variances in psychological and educational research.
    Journal of Educational Statistics, 19:23–42, 1994.
    [12] P.H. Ramsey and P.P. Ramsey. Updated version of the critical values of the
    standardized fourth moment. Journal of statistical computation and simulation,
    44(3):231–241, 1993.
    [13] P.H. Ramsey and P.P. Ramsey. Testing variability in the two-sample case.
    Communications in Statistics: Simulation and Computation, 36(2):233–248,
    2007.
    [14] L.H. Shoemaker. Tests for differences in dispersion based on quantiles. The
    American Statistician, 49(2):179–182, 1995.
    [15] S. Siegel and J.W. Tukey. A nonparametric sum of ranks procedure for relative
    spread in unpaired samples. Journal of the American Statistical Association,
    pages 429–445, 1960.
    [16] P. Sprent and N. C. Smeeton. Applied nonparametric statistical methods.
    Chapman & Hall Ltd, fourth edition, 2007.
    Description: 碩士
    國立政治大學
    統計研究所
    98354001
    99
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0098354001
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    400101.pdf337KbAdobe PDF2827View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback