政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/60434
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113822/144841 (79%)
造访人次 : 51837396      在线人数 : 306
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/60434


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/60434


    题名: 從假設檢定的觀點探討ARMA模型的參數配適
    ARMA Model Selection from Hypothesis Point of View
    作者: 林芸生
    Lin, Yun Sheng
    贡献者: 黃子銘
    Huang, Tzee Ming
    林芸生
    Lin, Yun Sheng
    关键词: 假設檢定
    ARMA
    Model selection
    AIC
    BIC
    Hypothesis testing
    日期: 2009
    上传时间: 2013-09-05 15:11:08 (UTC+8)
    摘要: 本篇論文著重於探討ARMA模型的選模準則,過去較為著名的AIC、BIC等選模準則中,若總參數個數相同,模型選擇便簡化為比較各模型的概似函數在MLE下的值,故本研究將假設檢定定義為檢定總參數個數;截至目前為止,選模準則在使用上以AIC及BIC較為普遍,此兩種選模準則從本研究所定義的假設檢定的觀點來看,AIC犯型一誤差機率高,同時檢定力也高;BIC犯型一誤差的機率極低,同時檢定力也相對不高,本研究從此觀點提出一個選模準則方法,嘗試將上述兩種方法折衷,將型一誤差控制在5%,且檢定力略高於BIC。模擬的結果在理想的情形下皆符合預期,但在真實情形本研究方法涉及第一階段的模型選取,本研究提供兩種第一階段的模型選取方法,模擬的結果顯示,方法一型一誤差略為膨脹,檢定力增幅顯著;方法二型一誤差控制精準,但檢定力表現較差。本研究所提出的方法計算時間較為冗長,但若想將 AIC 及 BIC 方法折衷,可考慮嘗試本研究方法。
    This thesis focuses on model selection criteria for ARMA models. For information-based criteria such as AIC and BIC, the task of model selection is reduced to the comparison among likelihood values at maximum likelihood estimates if the numbers of parameters in candidate models are all the same. Thus the key step in model selection is the determination of the total number of parameters.

    The determination of number of parameters can be addressed using a hypothesis testing approach, where the null hypothesis is that the total number of model parameters is equal to a given number k and the alternative hypothesis is that the total number of parameters is equal to k+1. In this thesis, an information-based model selection method is proposed, where the number of parameters is determined using a two-stage testing procedure, which is constructed with the attempt to control the average type I error probability to be 5%. When using BIC in the above testing problem, simulation results indicate that the average type I error probability for BIC is lower than 0.05, so it is expected the proposed test is more powerful than BIC.

    The first stage of the proposed test involves selecting the most likely models under the null and the alternative hypothesis respectively. Two methods are considered for the first-stage selection. For the first method, the type I error probability can be larger than 0.05, but the power is significantly larger than BIC. For the second method, the type I error probability is under control, but its power increment is comparatively low. The computing time for the proposed test is rather long. However, for those who need an eclectic method between AIC and BIC, the proposed test can serve as a reasonable choice.
    參考文獻: Akike, H. (1973), “Information theory and an extension of the maximum likelihood principle”, Budapest, Hungary, 267-281
    Akike, H. (1978), “A Bayesian analysis of the minimum AIC procedure”, Annals of the Institute of Statistical mathematics, 30(1), 9-14
    Brockwell, P.J. and Davis, R.A. (2009), “Time series: theory and methods”, Springer Verlag
    Casella, G. and Berger, R.L. and Berger, R.L. (2002), “Statistical inference”, Duxbury Pacific Grove, CA
    Clarke, B. (2001), “Combining model selection procedures for online prediction”, Sankhy: The Indian Journal of Statistics, Series A, 229--249
    Hurvich, C.M. and Tsai, C.L. (1989), “Regression and time series model selection in small samples”, Biometrika, 76(2), 297
    Kullback, S. and Leibler, RA (1951), “On information and sufficiency”, The Annals of Mathematical Statistics, 79-86
    Reschenhofer , Erhard (2005), “Selecting Selection Methods”, InterStat: Statistics on the Internet, 7(3), 1-17
    Wagenmakers, E.J. and Grunwald, P. and Steyvers, M. (2006), “Accumulative prediction error and the selection of time series models”, Journal of Mathematical Psychology, 50(2), 149-166
    Yang, Y. (2005), “Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation”, Biometrika, 92(4), 937
    溫志宏, 無線通道模型概論, 國立中正大學
    葉欣甯(2002), 時間序列的選模分析:Cross Validation之應用, 國立清華大學碩士論文
    描述: 碩士
    國立政治大學
    統計研究所
    97354017
    98
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0097354017
    数据类型: thesis
    显示于类别:[統計學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    401701.pdf840KbAdobe PDF22284检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈