English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51731925      Online Users : 610
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/60433
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/60433


    Title: 小區域人口推估研究:臺北市、雲嘉兩縣、澎湖縣的實證研究
    A study of small area population projection in Taiwan
    Authors: 陳政勳
    Contributors: 余清祥
    陳政勳
    Keywords: 小區域人口推估
    人口老化
    人口變動要素合成法
    電腦模擬
    Small Area Population Projection
    Population Aging
    Cohort Component Method
    Computer Simulation
    Date: 2009
    Issue Date: 2013-09-05 15:10:56 (UTC+8)
    Abstract: 一個國家對全國人口有充分瞭解,方能依據國情制定適合的政策,地方發展更是如此,更須洞悉各地的人口結構,以善用有限的資源。台灣近年人口老化日益明顯,各縣市的老化速度及人口問題也不盡相同,若可獲得各地區未來的人口相關數值 (亦即人口推估),當能減輕未來人口老化對台灣造成的衝擊。本文以縣市層級的人口推估,也就是小區域人口推估為研究目標,探討需注意的事項,尋找適合台灣地區的小區域推估方法。

    本文整理小區域人口推估方法,並使用人口要素變動合成法 (Cohort Component Method),以雲嘉兩縣、臺北市、澎湖縣為範例,測試縣市層級的人口推估。人口推估與生育、死亡、遷移三者的假設有密切關係,我們以死亡率為目標,比較不同模型的優劣,考慮的模型包括 Lee-Carter 模型、區塊拔靴法 (Block Bootstrap)、篩網拔靴法 (Sieve Bootstrap) 以及泛函資料分析 (Functional Data Analysis) 中的主成份分析 (Principle Component Analysis),以估計誤差為衡量方法優劣的標準。分析發現篩網拔靴法、區塊拔靴法、Lee-Carter 模型三者的結果較佳,因此在小區域推估中使用較簡便的區塊拔靴法。研究發現對小區域的人口推估而言,遷移假設扮演非常重要的角色,此與全國規模的人口推估結果截然不同。研究過程亦發現人口三要素對人口推估有明顯的影響,若假設三要素間互相獨立 (也就是傳統推估時的假設),推估結果的預測區間遠小於三要素不獨立。
    The government can make policy according to the population change in this country, while the local government can develop their district by using their limited resources well after realizing the populaton structure. The population ageing is becoming more serious and being more different among every counties in Taiwan day by day. If we can get the relative numbers of population in the future (population projection), we can decrease the attack of population ageing for Taiwan. The aim of this paper is to find an appropriate method and some notations of small area population projection in Taiwan.

    The paper includes the summary of methods of small area population projection and the results by using cohort component method on three areas in Taiwan, YunLin & ChiaYi, Taipein City and PengHu. Population projection is highly related with birth, death and migration, hence we test the mortality rate by using several methods, Lee-Carter, block bootstrap, sieve bootstrap and principal component analysis of functional data analysis are included. We found that the result of sieve bootstrap, block bootstrap and Lee-Carter are much better than the others, therefore, we take block bootstrap which is much simpler than the other two to analysis the effect of birth, death and migration in population projection. The sutdy found that, in small area population projecton, migration plays an important role, which is totally different from the whole country population projection.
    Reference: 中文部分
    行政院經濟建設委員會人力規劃處 (2008), "中華民國臺灣97年至145年人口推計" 臺北
    何正羽 (2006). "高齡人口 Gompertz 死亡率推估模型的建構與應用" 東吳大學商用數學系碩士論文.
    郭孟坤與余清祥 (2007). "電腦模擬, 隨機方法與人口推估的實證研究" 人口學刊 36: 67-98.
    曾奕翔與余清祥 (2002). "Lee-Carter 估計模式與死亡率推估研究" 中華民國人口學會學術研討會.
    歐長潤與余清祥 (2008). "APC 模型估計方法的模擬與實證研究" 國立政治大學統計學系碩士論文.

    英文部分
    Alho, J. and B. D. Spencer (2005). Statistical demography and forecasting, Springer Verlag.
    Alonso, A. M., a. Peña, D., et al. (2003). "On sieve bootstrap prediction intervals." Statistics & Probability Letters 65(1): 13-20.
    Bühlmann., P. (2002). "Bootstraps for time series." Statistical Science: 52-72.
    Bell, W. R. (1992). ARIMA and Principal Component Models in Forecasting Age-Specific Fertility. National Population Forecasting in Industrialized Countries. N. Keilman and H. Cruijsen, Amsterdam: Swets and Zeitlinger.
    Bell, W. R. (1997). "Comparing and assessing time series methods for forecasting age-specific fertility and mortality rates." Journal of Official Statistics 13(3): 279-304.
    Cannan, E. (1895). "The probability of a cessation of the growth of population in England and Wales during the next century." The Economic Journal 5(20): 505-515.
    Denton, F. T., C. H. Feaver, et al. (2005). "Time series analysis and stochastic forecasting: An econometric study of mortality and life expectancy." Journal of Population Economics 18(2): 203-227.
    Efron, B. (1979). "Bootstrap methods: another look at the jackknife." The annals of statistics 7(1): 1-26.
    Hall, P. (1985). "Resampling a coverage pattern." Stochastic Processes and their Applications 20(2): 231-246.
    Hyndman, R. J., S. Ullah, et al. (2007). "Robust forecasting of mortality and fertility rates: A functional data approach." Computational Statistics & Data Analysis 51(10): 4942-4956.
    Künsch., H.R. (1989). "The jackknife and the bootstrap for general stationary observations." The Annals of Statistics: 1217-1241.
    Kanaroglou, P. S., H. F. Maoh, et al. (2009). "A demographic model for small area population projections: an application to the Census Metropolitan Area of Hamilton in Ontario, Canada." Environment and Planning A 41(1).
    Keilman, N., D. Q. Pham, et al. (2002). "Why population forecasts should be probabilistic-illustrated by the case of Norway." Demographic Research 6: 410-454.
    Koissi, M. C., A. F. Shapiro, et al. (2006). "Evaluating and extending the Lee-Carter model for mortality forecasting: Bootstrap confidence interval." Insurance: Mathematics and Economics 38(1): 1-20.
    Lawson, C. L. and R. J. Hanson (1974). Solving least squares problems, Prentice-Hall, EngleWood Cliffs, NJ.
    Lee, R. D. (1998). "Probabilistic approaches to population forecasting." Population and Development Review 24: 156-190.
    Lee, R. D. and L. R. Carter (1992). "Modeling and forecasting US mortality." Journal of the American Statistical Association 87(419): 659-671.
    Lee, W. C. (2003). "A Partial SMR Approach to Smoothing Age-specific Rates." Annals of epidemiology 13(2): 89-99.
    Li, N., R. Lee, et al. (2004). "Using the Lee-Carter method to forecast mortality for populations with limited data." International Statistical Review: 19-36.
    Lutz, W., W. C. Sanderson, et al. (1998). "Expert-based probabilistic population projections." Population and Development Review 24: 139-155.
    Lutz, W. and S. Scherbov (1998). "An expert-based framework for probabilistic national population projections: The example of Austria." European Journal of Population 14(1): 1-17.
    Mammen, E. and S. Nandi (2004). Bootstrap and Resampling.
    Neumaier, A. and T. Schneider (2001). "Estimation of parameters and eigenmodes of multivariate autoregressive models." ACM Transactions on Mathematical Software (TOMS) 27(1): 57.
    Politis, D. N. and J. P. Romano (1994). "The Stationary Bootstrap." Journal of the American Statistical Association 89(428).
    Ramsay, J. and B. Silverman (2005). Functional data analysis, Springer Verlag.
    Rao, J. (2003). Small area estimation, Wiley-Interscience.
    Rees, P., P. Norman, et al. (2004). "A framework for progressively improving small area population estimates." Journal of the Royal Statistical Society. Series A (Statistics in Society) 167(1): 5-36.
    Rogers, A. (1995). Multiregional demography: principles, methods and extensions, John Wiley & Son Ltd.
    Sanderson, W. C., S. Scherbov, et al. (2004). "Conditional probabilistic population forecasting." International Statistical Review: 157-166.
    Smith, S. K. (1987). "Tests of forecast accuracy and bias for county population projections." Journal of the American Statistical Association 82(400): 991-1003.
    Stoto, M. A. (1983). "The accuracy of population projections." Journal of the American Statistical Association: 13-20.
    Tiao, G. and G. Box (1981). "Modeling multiple times series with applications." Journal of the American Statistical Association 76(376): 802-816.
    Tuljapurkar, S., R. D. Lee, et al. (2004). "Random scenario forecasts versus stochastic forecasts." International Statistical Review: 185-199.
    Whelpton, P. (1928). "Population of the United States, 1925 to 1975." American Journal of Sociology: 253-270.
    Wilson, T. and M. Bell (2004a). "Australia`s uncertain demographic future." Demographic Research 11(8): 195-234.
    Wilson, T. and M. Bell (2004b). "Comparative empirical evaluations of internal migration models in subnational population projections." Journal of Population Research 21(2): 127-160.
    Description: 碩士
    國立政治大學
    統計研究所
    97354015
    98
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0097354015
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    401501.pdf2887KbAdobe PDF2789View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback