English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52559007      Online Users : 1153
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/59307
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/59307


    Title: 不動產評價之空間計量與地理統計
    Spatial Econometrics and Geostatistics for Real Estate Valuation
    Authors: 陳靜宜
    Chen, Jing Yi
    Contributors: 廖四郎
    Liao, Szu Lang
    陳靜宜
    Chen, Jing Yi
    Keywords: 房價
    空間自相關
    空間計量學
    地理統計學
    克利金
    共克利金
    地理加權迴歸
    house prices
    spatial autocorrelation
    spatial econometrics
    geostatistics
    kriging
    cokriging
    geographically weighted regression
    Date: 2012
    Issue Date: 2013-09-02 16:04:08 (UTC+8)
    Abstract: 近年來由於地理資訊系統(GIS)的快速發展發,空間資料分析開始受到重視並在社會科學領域中逐漸扮演重要的角色。雖然一般的統計方法已在傳統資料分析上發展已久,然而它們卻不能有效地說明空間性資料,並且無法充分處理空間相依或空間異質性問題。一般而言,空間資料分析主要有兩個分派:模型導向學派與資料導向學派。本文研究目的在於應用空間統計方法合理且充分地評估房地產價值,研究方法包含地理統計(克利金和共克利金)、地理加權迴歸與空間特徵價格模型等,並且以台中市不動產資料進行實證探究。這項新的研究技術在不動產評價領域中將可提供更好的解析能力,使其在評價過程中或是不動產投資決策時,成為一個更強而有力的分析工具。
    In recent years, spatial data analysis has received significant awareness and played an important role in social science because of the rapid development of Geographic Information System (GIS). Although classic statistical methods are attractive in traditional data analysis, they cannot be executed seriously for spatial data. Standard statistical techniques didn’t sufficiently deal with spatial dependence or spatial heterogeneity issues. Generally, the model-driven method and the data-driven method are mainly the two branches of the spatial data analysis. The purpose of this paper is to apply spatial statistics methods including geostatistical methods (kriging and cokiging), geographically weighted regression, and spatial hedonic price models to real estate analysis. It seems to be completely reasonable and sufficient. The real estate data in Taichung city (Taiwan) is used to carry out our exploration. These techniques give better insight in the field of real estate assessment. They can apply a good instrument in mass appraisal and decision concerning real estate investment.
    Reference: Anselin, L. (1998). Spatial econometrics: methods and models. Kluwer, Dordrecht.
    Anselin, L. (2003). GeoDa™0.9User’s Guide, CSISS.
    Basu, S. and Thibodeau, T. G. (1998). Analysis of spatial autocorrelation in house prices. Journal of Real Estate Finance and Economics, 17, 61 – 85.
    Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society B, 36, 192-225.
    Bourassa, S. C., Cantoni, E. and Hoesli, M. (2007). Spatial dependence, housing submarkets, and house price prediction. Journal of Real Estate Finance and Economics. 35, 143 –160.
    Brunsdon, C., Fotheringham, A. S. and Charlton, M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28 (4), 281-298.
    Brunsdon, C., Fotheringham, A. S. and Charlton, M. (1998). Geographically weighted regression-modeling spatial non-stationarity. Journal of the Royal Statistical Society. Series D (The Statistician), 47(3), 431-443.
    Calderón, G. F. A. (2009). Spatial regression analysis vs. kriging methods for spatial estimation. International Advances in Economic, 15, 44-58.
    Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., et al. (1994). Field scale variability of soil properties in central iowa soils. Soil Science Society of America Journal, 58, 1501 – 1511.
    Chica-Olmo, J. (1995). Spatial estimation of housing prices and locational rents. Urban Studies, 32(8), 1331-1344.
    Chica-Olmo, J. (2007). Prediction of house location price by multivariate spatial method: co-kriging. Journal of Real Estate Research, 29, 91-114.
    Chun, Y. and Griffith, D. A. (2013). Spatail Statistics & Geostatistics: Theory and Application for Geographic Information Science & Technology, SAGE.
    Clapp, J., Dubin, R. and Rodriguez, M. (2004). Modeling spatial and temporal house price patterns: a comparison of four models. Journal of Real Estate Finance and Economics, 29(2), 167-191.
    Cressie, N. (1991). Statistics for Spatial Data, New York: Wiley.
    Dubin, R. A. (1998). Predicting house prices using multiple listings data. Journal of Real Estate Finance and Economics, 17, 35 – 59.
    Dubin, R.A, Pace, R. K. and Thibodeau, T. G. (1999). Spatial autoregression techniques for real estate data. Journal of Real Estate Literature, 7, 79–95.
    Fotheringham, A.S., Charlton, M.E. and Brunsdon, C. (2000). Quantitative Geography, SAGE.
    Fregonara, E., Rolando, D. and Semeraro, P. (2012). The value spatial component in the real estate market: the Turin case study. Aestimum60, Giugno, 85-113.
    Gelfand, A. E., Ecker, M. D, Knight, J. R., and Sirmans, C. F. (2004). The dynamics of location in home price. Journal of Real Estate Finance and Economics, 29(2), 149-166.
    Gillen, K., Thibodeau, T. and Wachter, S. (2001). Anisotropic autocorrelation in house price. Journal of Real Estate Finance and Economics, 23, 5-31.
    Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation, New York: Oxford University Press.
    Johnston, K., Ver Hoef, J.M., Krivoruchko, K. and Lucas. N. (2003). Using ArcGIS Geostatistical Analyst, ESRI Press.
    Kulczycki, M. and Ligas, M. (2007). Spatial Statistics for Real Estate Data, Strategic Integration of Surveying Services, Hong Kong: SAR, China.
    LeSage, J. P. and Pace, R. K. (2004). Models for spatial dependent missing data. Journal of Real Estate Finance and Economics, 29 (2), 233-254.
    Liu, D., Wang, Z., Zhang, B., Song, K., Li, X. and Li, J. (2006). Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, northeast china. Agriculture, Ecosystems and Environment, 113, 73 – 81.
    Lloyd, C. D. (2011). Local Models for Spatial Analysis, CRC Press.
    Long, F. Páez, A. and Farber, S. (2007). Spatial effects in hedonic price estimation: a case study in the city of Toronto, CSpA Working Paper, McMaster University.
    Matheron, G. (1963). Principle of geostatistics. Economic Geology, 58, 1246-1266.
    Matthews, S. A. and Yang, T. C. (2012). Mapping the results of local statistics: using geographically weighted regression. Demographic Research, 26 (6), 151-166.
    Militino, A, F., Ugarte, M. D. and García-Reinaldos, L. (2004). Alternative models for describing spatail dependencr among dwelling selling prices. Journal of Real Estate Finance and Economics, 29(2), 193-209.
    Mitchell, A. (2005). The ESRI Guide to GIS Analysis, Volume 2: Spatial Measurements and Statistics, ESRI Press.
    Moran, P. A. P. (1948). The interpretation of statistical maps. Biometrika, 35, 255–260.
    Osland, L. (2010). An application of spatial econometrics in relation to hedonic house price modeling. Journal of Real Estate Research, 32 (2), 289-320.
    Pace, R. K., Barry, R. and Simans, C. F. (1998). Spatail statistics and real estate. Journal of Real Estate Finance and Economics, 17(1), 5-13.
    Pace, R. K. and LeSage, J. P. (2004). Spatail statistics and real estate. Journal of Real Estate Finance and Economics, 29 (2), 147-148.
    Rosen, S. (1974). Hedonic prices and implicit markets: product differentiation in pure competition. Journal of Political Economy, 82, 34-55.
    Tsutsumi, M. and Seya, H. (2008). Measuring the impact of large-scale transportation projects on land price using spatial statistical models. Paper in Regional Science, 87, 385–401.
    Wackernagel, H. (1995). Multivariate Geostatistics: An Introduction with Applications, Springer.
    Zhu, B., Füss, R. and Rottke, N. B. (2011). The predictive power of anisotropic spatial correlation modeling in housing prices. Journal of Real Estate Finance and Economics, 42, 542 – 565.
    Yoo, E. H. and Kyriakidis, P. C. (2009). Area-to-point kriging in spatial hedonic pricing models. Journal of Geographical Systems, 11, 381-406.
    Description: 博士
    國立政治大學
    金融研究所
    97352505
    101
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0097352505
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    250501.pdf7044KbAdobe PDF2311View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback