English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52587022      Online Users : 1037
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/59285
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/59285


    Title: 不同單因子結構模型下合成型擔保債權憑證定價之研究
    Comparison between different one-factor copula models of synthetic CDOs pricing
    Authors: 黃繼緯
    Huang, Chi Wei
    Contributors: 劉惠美
    黃繼緯
    Huang, Chi Wei
    Keywords: 合成型擔保債權憑證
    單因子結構模型
    synthetic CDOs
    one-factor copula model
    Date: 2012
    Issue Date: 2013-09-02 15:36:20 (UTC+8)
    Abstract: 1990年代中期信用衍生信商品開始發展,隨著時代變遷,演化出信用違約交換(Credit Default Swaps, CDS)、擔保債權憑證(Collateralized Debt Obligation, CDO)、合成型擔保債權憑證(Synthetic CDO)等商品,其可以分散風險的特性廣受歡迎,並且成為完備金融市場中重要的一環。在2007年金融海嘯中,信用衍生性商品扮演相當關鍵的角色,所以如何合理定價各類信用衍生性商品就變成相當重要的議題

    以往在定價合成型擔保債權憑證時,多採取單因子結構模型來做為報酬函數的主要架構,並假設模型分配為常態分配、t分配、NIG分配等,但單因子結構模型的隱含相關係數具有波動性微笑現象,所以容易造成定價偏誤。

    為了解決此問題,本文將引用常態分配假設與NIG分配假設下的隨機風險因子負荷模型(Random Factor Loading Model),觀察隨機風險因子負荷模型是否對於定價偏誤較其他模型有所改善,並且比較各模型在最佳化參數與定價時的效率,藉此歸納出較佳的合成型擔保債權憑證定價模型。
    During the mid-1990s, credit-derivatives began to be popular and evolved into credit default swaps (CDS), collateralized debt obligation (CDO), and synthetic collateralized debt obligation (Synthetic CDO). Because of the feature of risk sharing, credit-derivatives became an important part of financial market and played the key role in the financial crisis of 2007. So how to price credit-derivatives is a very important issue.

    When pricing Synthetic CDO, most people use the one-factor coupla model as the structure of reward function, and suppose the distribution of model is Normal distribution, t- distribution or Normal Inverse Gaussian distribution(NIG). But the volatility smile of implied volatility always causes the pricing inaccurate.

    For solving the problem, I use the random factor loading model under Normal distribution and NIG distribution in this study to test whether the random factor loading model is better than one-factor coupla model in pricing, and compare the efficience of optimization parameters. In conclusion, I will induct the best model of Synthetic CDO pricing.
    Reference: [1] Chunfa Wang and Dingwei Huang. (2009). “Double Normal Inverse Gaussian Copula with Random Factor Loadings Model for Synthetic CDO Pricing.” Management and Service Science, 2009. MASS `09. International Conference on.
    [2] Li. David X. (2000). “On Default Correlation: A Copula Function Approach.”
    Journal of Fixed Income, Vol. 9, Issue 4, pages 43–54.
    [3] Hull, J. and White, A. (2004). “Valuation of a CDO and an n-th to Default CDS Without Monte Carlo Simulation.” Journal of Derivatives, Vol. 12, No. 2, pp. 8–23.
    [4] Kalemanova, A., Schmid, B. Werner, R. (2007). “The normal inverse gaussian distribution for synthetic CDO pricing.” Journal of derivatives, Vol 14, pp. 80-93.
    [5] Barndorff-Nielsen O. E. (1987). “Hyperbolic distributions and distributions on hyperbolae.” Scandinavian Journal of Statistics 5, pp. 151-157.
    [6] O`kane, D., and Livesey, M. (2001). “Modeling Credit: Theory and Practice.”
    Quantitative Credit Research, Lehman Brothers.
    [7] Vasicek , O. (2002). “Loan Portfolio Value.” Risk, Vol. 12, pp.160-162
    [8]邱嬿燁 (2007) 探討單因子複合分配關聯結構模型之擔保債權憑證之評價,國立政治大學博士學位論文
    [9]林聖航 (2012) 探討合成型抵押擔保債券憑證之評價, 國立政治大學碩士學位論文
    Description: 碩士
    國立政治大學
    統計研究所
    100354005
    101
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0100354005
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    400501.pdf964KbAdobe PDF2312View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback