Reference: | Anselin, L. (1995). Local indicators of spatial associationlisa. Geographical analysis, 27 (2), 93–115. Banerjee, S., Carlin, B., & Gelfand, A. (2004). Hierarchical Modeling and Analysis for Spatial Data. Chapman & Hall: London. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society. Series B (Methodological), 36 (2), 192–236. Besag, J. (1975). Statistical analysis of non-lattice data. The statistician, 179–195. Besag, J. (1977). Efficiency of pseudo-likelihood estimation for simple gaussian fields. Biometrika, 64 , 616–618. Besag, J. & Newell, J. (1991). The detection of clusters in rare diseases. Journal of the Royal Statistical Society. Series A (Statistics in Society), 143–155. Besag, J., York, J., & Molli´e, A. (1991). Bayesian image restoration, withtwo applications in spatial statistics. Annals of the Institute of Statistical Mathematics, 43 (1), 1–59. Best, N., Richardson, S., & Thomson, A. (2005). A comparison of bayesian spatial models for disease mapping. Statistical Methods in Medical Research, 14 (1), 35–59. Clayton, D. & Bernardinelli, L. (1992). Bayesian methods for mapping disease risk. In P. Elliott, J. Cuzick, D. English, and R. Stern (Eds.), Geographical and Environmental Epidemiology: Methods for Small-Area Studies. Oxford: Oxford University Press. Cressie, N. (1993). Statistics for Spatial Data, revised edition. Wiley: New York. Cressie, N. & Chan, N. (1989). Spatial modeling of regional variables. Journal of the American Statistical Association, 84 (406), 393–401. Gangnon, R. & Clayton, M. (2000). Bayesian detection and modeling of spatial disease clustering. Biometrics, 56 (3), 922–935. Geary, R. (1954). The contiguity ratio and statistical mapping. The incorporated statistician, 5 (3), 115–146. Getis, A. & Ord, J. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24 (3), 189–206. Hammersley, J. M. & Clifford, P. (1971). Markov fields on finite graphs and lattices. 1971. Unpublished manuscript, cited in [Ish81]. Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57 (1), 97–109. Huang, L., Kulldorff, M., & Gregorio, D. (2007). A spatial scan statistic for survival data. Biometrics, 63 (1), 109–118. Huang, L., Pickle, L. W., & Das, B. (2008). Evaluating spatial methods for investigating global clustering and cluster detection of cancer cases. Statistics in Medicine, 27 (25), 5111–5142. Jung, I. (2009). A generalized linear models approach to spatial scan statistics for covariate adjustment. Statistics in Medicine, 28 (7), 1131–1143. Jung, I., Kulldorff, M., & Klassen, A. (2007). A spatial scan statistic for ordinal data. Statistics in Medicine, 26 (7), 1594–1607. Knox, E. & Bartlett, M. (1964). The detection of space-time interactions. Journal of the Royal Statistical Society. Series C (Applied Statistics), 13 (1), 25–30. Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics-Theory and Methods, 26 (6), 1481–1496. Kulldorff, M. (2001). Prospective time periodic geographical disease surveillance using a scan statistic. Journal of the Royal Statistical Society: Series A (Statistics in Society), 164 (1), 61–72. Kulldorff, M. (2006). Tests of spatial randomness adjusted for an inhomogeneity: a general framework. Journal of the American Statistical Association, 101 (475), 1289–1305. Moran, P. (1950). Notes on continuous stochastic phenomena. Biometrika, 17–23. Openshaw, S., Charlton, M., Craft, A., & Birch, J. (1988). Investigation of leukaemia clusters by use of a geographical analysis machine. The Lancet , 331 (8580), 272–273. Ord, J. K. & Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27 (4), 286–306. Ord, J. K. & Getis, A. (2001). Testing for local spatial autocorrelation in the presence of global autocorrelation. Journal of Regional Science, 41 (3), 411–432. Patil, G. & Taillie, C. (2004). Upper level set scan statistic for detecting arbitrarily shaped hotspots. Environmental and Ecological Statistics, 11 (2), 183–197. Rencher, A. (2000). Linear Models in Statistics. Wiley: New York. Richardson, S., Thomson, A., Best, N., & Elliott, P. (2004). Interpreting posterior relative risk estimates in disease-mapping studies. Environmental Health Perspectives, 112 (9), 1016–1025. Spiegelhalter, D., Thomas, A., Best, N., & Lunn, D. (2003). Winbugs user manual. Cambridge: MRC Biostatistics Unit . Tango, T. & Takahashi, K. (2005). A flexibly shaped spatial scan statistic for detecting clusters. International Journal of Health Geographics, 4 (1), 11. Thomas, A., Best, N., Lunn, D., Arnold, R., & Spiegelhalter, D. (2004). Geobugs user manual. Cambridge: MRC Biostatistics Unit . Tiefelsdorf, M., Griffith, D., & Boots, B. (1999). A variance-stabilizing coding scheme for spatial link matrices. Environment and Planning A, 31 (1), 165–180. Turnbull, B., Iwano, E., Burnett, W., Howe, H., & Clark, L. (1990). Monitoring for clusters of disease: application to leukemia incidence in upstate new york. American Journal of Epidemiology, 132 (supp1), 136–143. Wang, T.-C. & Yue, C.-S. J. (2013a). A binary-based approach for detecting irregularly shaped clusters. International journal of health geographics, 12 (1), 25. Wang, T.-C. & Yue, C.-S. J. (2013b). Spatial clusters in a global-dependence model. Spatial and Spatio-temporal Epidemiology, 5 , 39–50. Zeger, S. L., Liang, K.-Y., & Albert, P. S. (1988). Models for longitudinal data: a generalized estimating equation approach. Biometrics, 1049–1060. |