政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/58782
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114105/145137 (79%)
造访人次 : 52136516      在线人数 : 514
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/58782


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/58782


    题名: 確定提撥制退休金之評價:馬可夫調控跳躍過程模型下股價指數之實證
    Valuation of a defined contribution pension plan: evidence from stock indices under Markov-Modulated jump diffusion model
    作者: 張玉華
    Chang, Yu Hua
    贡献者: 陳麗霞
    林士貴

    Chen, Li Shya
    Lin, Shih Kuei

    張玉華
    Chang, Yu Hua
    关键词: 確定提撥制退休金
    保證收益
    馬可夫調控跳躍過程模型
    EM演算法
    Esscher轉換法
    defined contribution
    guarantee
    Markov-Modulated jump diffusion model
    expectation-maximization algorithm
    Esscher transformation
    日期: 2012
    上传时间: 2013-07-11 16:36:19 (UTC+8)
    摘要: 退休金是退休人未來生活的依靠,確保在退休後能得到適足的退休給付,政府在退休金上實施保證收益制度,此制度為最低保證利率與投資報酬率連結。本文探討退休金給付標準為確定提撥制,當退休金的投資報酬率是根據其連結之股價指數的表現來計算時,股價指數報酬率的模型假設為馬可夫調控跳躍過程模型,考慮市場狀態與布朗運動項、跳躍項的跳躍頻率相關,即為Elliot et al. (2007) 的模型特例。使用1999年至2012年的道瓊工業指數與S&P 500指數的股價指數對數報酬率作為研究資料,採用EM演算法估計參數及SEM演算法估計參數共變異數矩陣。透過概似比檢定說明馬可夫調控跳躍過程模型比狀態轉換模型、跳躍風險下狀態轉換模型更適合描述股價指數報酬率變動情形,也驗證馬可夫調控跳躍過程模型具有描述報酬率不對稱、高狹峰及波動叢聚的特性。最後,假設最低保證利率為固定下,利用Esscher轉換法計算不同模型下型I保證之確定提撥制退休金的評價公式,從公式中可看出受雇人提領的退休金價值可分為政府補助與個人帳戶擁有之退休金兩部分。以執行敏感度分析探討估計參數對於馬可夫調控跳躍過程模型評價公式的影響,而型II保證之確定提撥制退休金的價值則以蒙地卡羅法模擬並探討其敏感度分析結果。
    Pension plan make people a guarantee life in their retirement. In order to ensure the appropriate amount of pension plan, government guarantees associated with pension plan which ties minimum rate of return guarantees and underlying asset rate of return. In this paper, we discussed the pension plan with defined contribution (DC). When the return of asset is based on the stock indices, the return model was set on the assumption that markov-modulated jump diffusion model (MMJDM) could the Brownian motion term and jump rate be both related to market states. This model is the specific case of Elliot et al. (2007) offering. The sample observations is Dow-Jones industrial average and S&P 500 index from 1999 to 2012 by logarithm return of the stock indices. We estimated the parameters by the Expectation-Maximization (EM) algorithm and calculated the covariance matrix of the estimates by supplemented EM (SEM) algorithm. Through the likelihood ratio test (LRT), the data fitted the MMJDM better than other models. The empirical evidence indicated that the MMJDM could describe the asset return for asymmetric, leptokurtic, volatility clustering particularly. Finally, we derived different model`s valuation formula for DC pension plan with type-I guarantee by Esscher transformation under rate of return guarantees is constant. From the formula, the value of the pension plan could divide into two segment: government supplement and employees deposit made pension to their personal bank account. And then, we done sensitivity analysis through the MMJDM valuation formula. We used Monte Carlo simulations to evaluate the valuation of DC pension plan with type-II guarantee and discussed it from sensitivity analysis.
    參考文獻: [1] Black, F., Scholes, M., 1973.The pricing of options and corporate liabilities. Journal of Political Eeconomy 81, 3, 637-654.
    [2] Brennan, J.M., Schwartz, E.S., 1976. The pricing of equity-linked life insurance policies with an asset value guarantee. Journal of Financial Economics 3, 195-213.
    [3] Bo, L., Wang, Y., Yang, X., 2010. Markov-modulated jump-diffusion for currency option pricing. Insurance: Mathematics and Economics 46, 461-469.
    [4] Bodie, Z., Marcus, Alan J., Merton, Robert C., 1988. Defind benefit versus defined contribution pension plans: What are the real trade-offs? Pensions in the U.S. Economy. University of Chicago Press.
    [5] Charles, C., Fuh, C., D., Lin, S., K., 2013. A tale of two regimes: Theory and empirical evidence for a markov-modulated jump diffusion model of equity returns and derivative pricing implications. Working paper.
    [6] Cont, R., 2007. Volatility clustering in financial markets: empirical facts and agent-based models. Long Memory in Economics, 289-310.
    [7] Ding, Z., Granger, C., and Engle, R., 1993. A long memory property of stock market returns and a new model. Journal of Empirical Finance 1, 1, 83-106.
    [8] Duan, J.C., Popova, I., and Ritchken, P., 2002. Option pricing under regime switching. Quantitative Finance 2, 116-132.
    [9] Elliott, R.J., Chan, L., and Siu, T., 2005. Option pricing and Esscher transform under regime switching. Annals of Finance 1, 4, 423-432.
    [10] Elliott, R.J., Siu, T.K., Chan, L., 2007. Pricing options under a generalized markov-modulated jump-diffusion model. Stochastic Analysis and Application 25, 4, 821-843.
    [11] Elliott, R.J., Siu, T.K., 2012. Option pricing and filtering with hidden markov-modulated pure-jump processes. Applied Mathematical Finance, iFirst, 1-25.
    [12] Gerber, H., and Shiu, E., 1994. Option pricing by esscher transforms. Transactions of the Society of Actuaries 46, 99, 140.
    [13] Hamilton, J. D., 1989. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57 , 357-384.
    [14] Haldrup, N. and Nielsen, M.O., 2006. A regime switching long memory model for electricity prices. Journal of Econometrics 135, 349–376
    [15] Hsu, Emma Y., Lin, S.K., Hung, M., Huang, T.H., 2013. Empirical analysis of stock indices under regime switching model with dependent jump sizes risk. Working paper.
    [16] Korn, R., Siu, T.K., Zhang, A., 2011. Asset allocation for a DC pension fund under regime switching environment. European Actuarial Journal 1, 361-377.
    [17] Kou, S., 2002. A jump-diffusion model for option pricing. Management Science, 1086-1101.
    [18] Lange, K. A, 1995. Gradient algorithm locally equivalent to the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 57, 2, 425-437.
    [19] Lin, S. K., Shyu, S. D., and Wang, S. Y., 2013. Option pricing under stock market cycles with jump risks: evidence from Dow Jones industrial average index and S&P 500 indix. Working paper.
    [20] Lin, S. K., Lin, C. S. and Chou, C. Y. 2013. A recursive formula for a participating contract embedding a surrender option under regime-switching model with jump risks: evidence from S&P 500 stock indix. Working paper.
    [21] Lin, S. K., Yang, Sharon S. and Lin, C. Y., 2013. Valuation of equity-indexed annuities under regime-switching jump model: evidence from stock indices. Working paper.
    [22] Lin, S. K., Liu, H., Lee, J. C., 2013. Option pricing under regime-switching jump model with dependent jump sizes: evidence from stock index options. Working paper.
    [23] Lin, S. K., and Wu, S. J., 2013. Estimating variance of parameter estimators by supplemented expectation maximization and gibbs sampling algorithm in regime-switching jump model. Working paper.
    [24] Lindest, S., 2004. Relative guarantees. The geneva papers on risk and insurance theory 29, 187-209.
    [25] Mandelbrot, B., 1963. The variation of certain speculative prices. The Journal of Business 36, 4, 394-419.
    [26] Margrabe, W., 1978. The value of an option to exchange one asset for another. Journal of Finance 33, 177-186.
    [27] Merton, R.C., 1976. Option pricing when underlying stock returns are discontinuous* 1. Journal of Financial Economics 3, 1-2, 125-144.
    [28] Merton, R.C., 1983. On the role of Social Security as a means for efficient risk sharing in an economy where human capital is not tradeable. Financial aspects of the United States pension system, edited by Zvi Bodie and John Shoven. Chicago:University of Chicago Press.
    [29] Pennacchi, G.G, 1999. The value of guarantees on pension fund returns. Journal of Risk and Insurance 66, 219-237.
    [30] Person, S.A., Aase, K.K., 1997. Valuation of the minimum guaranteed return embedded in life insurance products. Journal of Risk and Insurance 64, 599-617.
    [31] Ramezani, C.A., Zeng, Y., 1999. Maximum likelihood estimation of asymmetric jump-diffusion processes: application to security prices. Working Paper.
    [32] Schaller, H., and Norden, S. V., 1997. Regime switching in stock market returns. Applied Financial Economics 7, 177-191.
    [33] Schwert, G. W., 1989. Business cycles, financial crises, and stock volatility. Carnegie Rochester Conference Series on Public Policy 31, 83-126.
    [34] Siu, T.K., Yang, H., Lau, J.W., 2008. Pricing currency options under two-factor markov-modulated stochastic volatility models. Insurance: Mathematics and Economics 43, 295-302.
    [35] Yang, S.S., Yueh, M.L., Tang, C.H., 2008. Valuation of the interest rate guarantee embedded in defined contribution pension plans. Insurance: Mathematics and Economics 42, 920-934.
    描述: 碩士
    國立政治大學
    統計研究所
    100354007
    101
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0100354007
    数据类型: thesis
    显示于类别:[統計學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    400701.pdf1134KbAdobe PDF2554检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈