政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/56880
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113822/144841 (79%)
造访人次 : 51767931      在线人数 : 522
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/56880


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/56880


    题名: 投射有限群表現之形變理論
    Deformation Theory of Representations of Profinite Groups
    作者: 周惠雯
    Chou, Hui Wen
    贡献者: 余屹正
    Yu, Yih Jeng
    周惠雯
    Chou, Hui Wen
    关键词: 投射有限群
    表現
    形變
    泛形變
    泛形變環
    扎里斯基切空間
    Profinite groups
    Representations
    Deformations
    Universal deformations
    Universal deformation rings
    Zariski tangent space
    Group cohomology
    日期: 2012
    上传时间: 2013-02-01 16:53:18 (UTC+8)
    摘要: 在本碩士論文中, 我們闡述了投射有限群表現, 以及其形變理論。 我們亦特別研究這些表示在 GL_1 和 GL_2 之形變, 並且給了可表示化 的判定準則。 最後, 我們解釋相對應的泛形變環之扎里斯基切空間與 群餘調之關連, 並計算了 GL_1 的泛形變表現。
    In this master thesis, we give an exposition of the deformation theory of representations for GL_1 and GL_2, respectively, of certain profinite groups. We give rigidity conditions of the fixed representation and verify several conditions for the representability. Finally, we interpret the Zariski tangent spaces of respective universal deformation rings as certain group cohomology and calculate the universal deformation for GL_1.
    參考文獻: [1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
    [2] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939.
    [3] J. W. S. Cassels and A. Fro ̈hlich (eds.), Algebraic Number Theory (2nd edition), London, United Kingdom, London Mathematical Society, 2010, Reprint of the 1967 original. MR 911121 (88h:11073)
    [4] L. Clozel, M. Harris, and R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations, Publ. Math. Inst. Hautes E ́tudes Sci. (2008), no. 108, 1–181, With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vigne ́ras.
    [5] B. Conrad, F. Diamond, and R. Taylor, Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc. 12 (1999), no. 3, 521–567.
    [6] B. de Smit and H. W. Lenstra, Jr. , Explicit construction of universal deformation rings, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, 1997, pp. 313–326.
    [7] F. Diamond, On deformation rings and Hecke rings, Ann. of Math. (2) 144 (1996), no. 1, 137–166.
    [8] J.-M. Fontaine and B. Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78.
    [9] A. Grothendieck, Technique de descente et th ́eor"emes d’existence en g ́eom ́etrie alg ́ebrique. II. Le th ́eor"eme d’existence en th ́eorie formelle des modules, Se ́minaire Bourbaki, vol. 5, Socie ́te ́ Mathe ́matique de France, 1995, pp. 369–390.
    [10] A. Grothendieck and J. Dieudonne ́, El ́ements de G ́eom ́etrie Alg ́ebrique, Publ. Math. IHES,4 (1960), 8 (1961), 11 (1961), 17 (1963), 20 (1964), 24 (1965), 28 (1966), 32 (1967).
    [11] K. Haberlan, Galois Cohomology of Algebraic Number Fields, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, With two appendices by Helmut Koch and Thomas Zink.
    [12] M. Harris, N.Shepherd-Barron, and R. Taylor, A family of Calabi-Yau varieties and potential automorphy, Ann. of Math. (2) 171 (2010), no. 2, 779–813.
    [13] H. Hida, Galois representations into GL_2(Z_p[X]) attached to ordinary cusp forms, Invent. Math. 85 (1986), no. 3, 545–613.
    [14] C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture. I, Invent. Math. 178 (2009), no. 3, 485–504.
    [15] C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture. II, Invent. Math. 178 (2009), no. 3, 505–586.
    [16] M. Kisin, The Fontaine-Mazur conjecture for GL_2, J. Amer. Math. Soc. 22 (2009), no. 3, 641–690.
    [17] M. Kisin, Lecture Notes on Deformations of Galois Representations, Clay Mathematics Institute 2009 Summer School on Galois Representations (University of Hawaii at Manoa, Honolulu, Hawaii), June 15 - July 10 2009.
    [18] M. Kisin, Moduli of finite flat group schemes and modularity, Ann. of Math. (2) 170 (2009), no. 3, 1085–1180.
    [19] S. Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, 1998.
    [20] B. Mazur, Deforming of Galois Representations, Galois Groups over Q (Y. Ihara, K. Ribet, and J.-P. Serre, eds.), Mathematical Sciences Research Institute Publications, no. 16, Springer-Verlag, 1987, pp. 385–437.
    [21] B. Mazur, An introduction to the deformation theory of Galois representations, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer-Verlag, New York, 1997, pp. 243–311.
    [22] J. Neukirch, Algebraic Number Theory, Grundlehren der mathematischen Wissenschaften, vol. 322, Springer-Verlag, 1999.
    [23] R. Ramakrishna, On a variation of Mazur’s deformation functor, Compositio Math. 87 (1993), 269–286.
    [24] M. Schlessinger, Functors of Artin rings, Trans. A.M.S. 130 (1968), 208–222.
    [25] J.-P. Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, 1979.
    [26] J.-P. Serre, Linear representations of finite groups, Graduate Texts in Mathematics, vol. 42, Springer-Verlag, New York, 1996.
    [27] J.-P. Serre, Galois cohomology, Springer Monographs in Mathematics, Springer-Verlag, 1997.
    [28] R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations. II, Publ. Math. Inst. Hautes E ́tudes Sci. (208), no. 108, 183–239.
    [29] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995), no. 3, 553–572.
    [30] J. Tilouine, Deformations of Galois representations and Hecke algebras, Published for The Mehta Research Institute of Mathematics and Mathematical Physics, Allahabad, 1996.
    [31] A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Ann. of Math. 141(1995), no.3, 443–551.
    描述: 碩士
    國立政治大學
    應用數學研究所
    99751014
    101
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0099751014
    数据类型: thesis
    显示于类别:[應用數學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    101401.pdf946KbAdobe PDF2930检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈