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Mathematical science is in my opinion an indivisible whole,
an organism whose vitality is conditioned upon the connection
of its parts.

Davip HILBERT, «cMathematical Problems »
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Abstract

In this master thesis, we give an exposition of the deformation theory of rep-
resentations for GL; and GL,, respectively, of certain profinite groups. We give
rigidity conditions of the fixed representation and verify several conditions for the
representability. Finally, we interpret the Zariski tangent spaces of respective uni-
versal deformation rings as certain group cohomology and calculate the universal

deformation for GL;.

KEYWORDS: Profinite groups; Representations; Deformations; Universal deforma-

tions; Universal deformation rings; Zariski tangent space; Group cohomology
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Gal(L/K)
Qs

Gs

GL,

0:G— G(k)
Hom(A, B)
W(k) or W
Ad(p)

Notations

Meaning

the empty set

the set-theoretic difference of X and Y

integers, rationals, reals, complex numbers

a prime integer

a profinite group

the ring of p-adic integers

the field of p-adic numbers

the Galois group of the field extension L/K

the maximal separable extension of Q unramified outside S
Gal(Qs/Q)

the general linear group of degree n

a connected reductive group (usually stands for GL; or GL; in
this master thesis)

a finite field of characteristic p

a fixed representation

the set of all continuous homomorphisms A — B

the ring of Witt vectors of k

the two-by-two matrices over k with G-action through p and by
conjugation

the category of sets

the category of complete noetherian local W-algebras with residue
field k

the subcategory of CNLy consisting of artinian objects

the deformation functor of p
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Chapter 1

Introduction

First Scene:

An open place, Thunder and lighting.

Enter three witches.
Shakespeare, Macbeth, Act 1

Nowadays, the idea to study deformations of representations of profinite groups is the achieve-
ment of the full Taniyama-Shimura-Weil conjecture proved by Diamond [7], Conrad, Diamond
& Taylor [5], and Breuil et al. [2]. However, the concept goes back to the seminal article of Mazur
[20]. Mazur’s motivation was to give a conceptual framework for some discoveries of Hida [13]
on ordinary families of Galois representations. It was the work of Wiles on Fermat’s Last Theo-
rem which made clear the importance of deformation theory developed by Mazur. The theory
was a key technical tool in the proof by Wiles and Taylor-Wiles of Fermat’s Last Theorem; cf.
(31, 29].

Mazur’s theory gives one a universal deformation ring which can be thought of as a parameter
space for all lifts of a given residual representation (up to conjugation). The ring depends on
the residual representation and on supplementary conditions one imposes on the lifts. If the
residual representation is modular and if the deformation conditions are such that the p-adic lifts
satisfy conditions that hold for modular Galois representations, then one expects in many cases
that the natural homomorphism R — T from the universal deformation ring R to a suitably
defined Hecke algebra T is an isomorphism. The proof of such isomorphisms, called R = T-
theorems, is at the heart of the proof of Fermat’s Last Theorem. It expresses that all p-adic Galois
representation of the type described by R are modular and in particular they arise from geometry.

Many refinements of Wiles’ methods have since been achieved and the theory has been vastly
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generalized to various settings of automorphic forms. R = T theorems, lie at the basis of the
proof of the Taniyama-Shimura conjecture by Breuil, Conrad, Diamond and Taylor, the Sato-Tate
conjecture by Clozel, Harris, & Taylor [4], Harris, Shepherd-Barron & Taylor [12], and Taylor
[28], and the the Serre conjecture by Khare-Wintenberger [14, 15]. The proof of Fermat’s Last
Theorem was also the first strong evidence to the conjectures of Fontaine and Mazur [8]. This
conjecture says that if a p-adic Galois representation satisfies certain local conditions that hold
for Galois representations which arise from geometry, then this representation occurs in the
p-adic étale cohomology of a variety over a number field. In fact, it is a major motivation for
the formulation of the standard conditions on deformation functors. These conditions should
(mostly) be local and reflect a geometric condition on a representation. Due to work of Emerton
and independently Kisin [16], there has been much progress on the Fontaine-Mazur conjecture
over Q.

This master thesis focusses solely on the Mazur’s deformation theory, especially for GL;
or GL,. Generally, one can also consider the representations into certain connected reductive
groups; cf. Tiloiune [30]. The obstruction theory and the deformation conditions are left un-
touched; cf. Mazur [20, 21].

The subject of Fourier transforms is already implicitly such a theory: the exponential function
is the equipment one needs to produce a canonical parametrization of the “universal family” of
one-dimensional continuous complex unitary representations of the real line IR, viewed as a Lie
group. For each real number 4, putting x,(x) := exp(27riax) we have that the universal family

of representations of the above type is given parametrically by

R — Hom(R,C*)

a — Xa-

This parameter space itself is again, canonically, the Lie group IR, and this miracle has repercus-
sions throughout mathematics.
Generally speaking, the “universal parametrization” of all one-dimensional continuous com-

plex unitary representations of any locally compact commutative topological group is treated by
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the theory of Pontrjagin. If G is a locally compact topological group, the “Pontrjagin dual” of G
G := Hom(RR,C*)

is the group parametrizing all degree one continuous unitary C-valued representations of G.
The fact that this parameter space of representations, G, is again a commutative locally compact
topological group is key to the further elaboration of Pontrjagin’s theory.

The more general question of appropriate parametrizations of finite, or infinite, dimensional
linear representations of a given type, for a given group, is, of course, one of the great ongoing
subjects for our studies. And the natural structure(s) that these parameter spaces come equipped
with is, again, key to any further detailed study.

Let k be a finite field of characteristic p and let W (k) be the ring of Witt vectors of k. Consider
the category CNLy of the complete noetherian local W-algebras A with a surjective local ho-
momorphism ¢ : A — k; the morphisms of CNLy are the local W-algebra homomorphisms

commute with the @’s.

A representation of the profinite group G is a continuous homomorphism
p:G— G(A),

where A is a topological, separated, commutative ring and G is a connected reductive group. We
say that (A, p) is a lift of p over A if A is an object in CNLyy and p is a representation for which

the following diagram commutes:

- 5(4)
o lq)
G—p>9(k)

where ¢ is the corresponding group homomorphism §(A) — G(k) induced by ¢ : A — k.
Two lifts p1 and py of p over A are said to be strictly equivalent if there exists a matrix M in
ker(G(A) — G(k)) for which p1(g) = Mp,(g)M ! for every ¢ in G. An equivalence class of
lifts is called a deformation of p.

For a representation p : G — G(k), the universal deformation ring R is a lift (R, p) for

Chap. 1 Introduction -3 -



which the following universal property holds: for any lift (A, p) of p there exists a unique ho-

momorphism ¢ : R — A such that the following diagram commutes:

We say that the profinite group G satisfies the p-finiteness condition @, if for all open sub-
groups Gg C G of finite index, there are only a finite number of continuous homomorphisms

from G to Z/ pZ. The main theorem is stated as follows:

THEOREM (MAZUR [20], RAMAKRISHNA [23]). Let G be GL or GLy. Suppose that G is a profi-
nite group satisfying the p-finiteness condition @, and p : G — G(k) is an absolutely irreducible
representation. Then there exists a universal deformation ring R in CNLyy and a universal defor-
mation p* of p to R,

p" G — G(R)

such that any deformation of p to a complete noetherian local W-algebra A is obtained from p" via

a unique morphism R — A.

However de Smit and Lenstra proved in [6], following an argument due to Faltings, that we
can skip the hypothesis of absolute irreducibility if we require the weaker condition Z5 = k for
the representation p : G — G(k).

The structure of this master thesis is organized as follows: Chapter 1 gives a brief review of the
theory of profinite groups and their representations. In Chapter 2, we explores the foundations
of Mazur’s theory on deformations. We also interpret the Zariski tangent spaces of universal
deformation rings as certain group cohomology. Finally, in Chapter 3 we apply the deformation
theory to representations and verify the representability conditions of Schlessinger’s criteria. In
the process, we shall see where the assumptions for the representability are needed. We also study
the 1-dimensional representations, and we will compute the universal deformation ring. The two
appendices on categories and functors and on group cohomology provide some fundamental

facts we use freely in this master thesis.
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Much of the current perspective on deformations of Galois representations is due to work of
M. Kisin as is clear to everyone familiar with the topic. Moreover, we found his lecture notes [17]

and his paper [18] are very helpful.




Chapter 2

Profinite Groups and their ‘Representations

Algebra is the offer made by the devil to the mathematician.
The devil says: “1 will give you this powerful machine, it
will answer any question you like. All you need to do is
give me your soul: give up geometry and you will have this

marvelous machine.”

Michael Atiyah

In this chapter, we give an exposition of the theory of profinite groups and their representa-
tions. We also introduce a finiteness condition which is one of the crucial conditions for defor-
mation theory. One can consult Serre’s [27] or Neukirch’s [22] books for further information on

profinite groups.

§ 2.1. Projective limits

A partial orderis abinary relation “<” over a set I which is reflexive, antisymmetric, and transitive,

i.e., for all a, b, and c in I, we have that:
(a) a < a (reflexivity);
(b) ifa <bandb < a,thena = b (antisymmetry);
(c) ifa <bandb < ¢, thena < c (transitivity).

A set with a partial order is called a partially ordered set. For example, the real numbers ordered
by the standard less-than-or-equal relation < and the set of natural numbers equipped with the

relation of divisibility are partially ordered sets.
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A directed set I is a partially ordered set such that for all i, j € I there exists a k € I with
i<kandj <k

DEFINITION 2.1.1. Let I be a directed set.

(1) A projective system of sets (groups, rings, etc.) indexed by I is a family P = {I, S;, fi; } of

sets (groups, rings, etc.) S; and maps (homomorphisms) fi]- : Sj — S; such that

fii = ids, foreachi € I, and fi = fij o fjx wheneveri <j < k.

(2) Wesaythat S = @ie ; Si is a projective limit of the projective system P if it satisfies two

conditions:

(a) S comes equipped with maps (homomorphisms) f; : S — S; for each i € I such
that f; = fi;o f;ifi < j.

(b) S is universal, i.e., for any other set (groups, rings, etc.) S’ and any maps (homomor-
phisms) ¢ = {g;}icr : S — P, there exists a unique homomorphism i : S’ — S

such that g; = fiohforalli € I.

To show the existence of S, we only have to let S be defined as the following set (group, ring,

etc.)

5= {(Ui)ief e[]si

i€l

If the S; are topological spaces and the f;; are continuous maps, then S is a closed subspace of

the topological space [ [;<; S;.

§ 2.2. Profinite groups

A group G is called a topological group if it is a group and a topological space at the same time, and

the group operations are continuous. Thus, the product: (a,b) > ab and the inverse: a +— a~!

1'is a homeomorphism since it is an involution. If

are continuous maps. The map a — a~
G is a topological group, for a fixed element a € G, these two maps ¢ — ag and g — ga

are continuous by the continuity of the product. Thus, the left and the right multiplications are

§2.2 Profinite groups -7 -



homeomorphisms. If the collection U/ = {U} is a system of open neighborhoods of the identity
lg of G, thenald := {al | U € U} and Ua := {Ua | U € U} are systems of open
neighborhoods of 4 in G.

DEFINITION 2.2.1. A topological group G which is the projective limit of finite groups { G; };e 1,

each equipped with the discrete topology, is called a profinite group.

As we give these finite groups the discrete topology, they are then compact as topological
spaces. By a theorem of Tychonoff, their product with product topology is then compact. Hence,
G carries a natural compact Hausdorff topology.

Suppose G is a profinite group, so that G = 1'&11.61 Gj, and let K; := ker(f; : G — Gj).
Then K; is an open subgroup of G and U = {K;} forms a basis of open neighborhoods of the
identity of G. If U € U, then G = |J,c¢ al is an open covering. By the compactness of G,
we can find a finite subcovering such that G = U?:l all. This shows that any open subgroup
U € U is of finite index. Since G is compact, it is Hausdorff, and hence ;¢ U = {16}

The following result gives an intrinsic characterization of profinite groups.
THEOREM 2.2.2. Let G be a compact Hausdorff group. Then the following assertions are equivalent:
(i) G is profinite;

(ii) G is totally disconnected, i.e., the connected component of any point is the singleton set con-

sisting only that point;

(iii) There is a collection U consisting of open normal subgroups of G that form a full system of
neighborhoods of the identity in G.

Example 2.2.3. If p is a prime integer, then the rings Z/p"Z, n € IN, form a projective system

with respect to the canonical projections Z/p"Z — Z./p™Z, n > m. The projective limit

Z,:=1imZ/p"Z
nelN

is the ring of p-adic integers. Z.y is a pro-p-group, that is, a projective limit of finite p-groups.

§2.2 Profinite groups - 8 -



Example 2.2.4. The rings Z/nZ, n € N, form a projective system with respect to the projec-
tions Z/nZ — Z/mZ for m|n, where the order in IN is given by the divisibility m|n. The
projective limit

72 :=1mZ/nZ
nelN

is called the Priifer ring. By the Chinese remainder theorem and passing to the projective limit,

we have a canonical decomposition
z= 11 z,.
p: prime

Example 2.2.5. Let L/K be a Galois extension of fields. The Galois group Gal(L/K) of this
extension is, by construction, the projective limit of the Galois groups Gal(L;/K) of the finite

Galois extensions L; /K which are contained in L/K; thus, it is a profinite group.

Example 2.2.6. A compact analytic group over the p-adic field Q, is profinite, when viewed as

a topological group. In particular, SL,(Z), Sp,,(Zy), GLy(Z}), . . . are profinite groups.

§ 2.3. Representations of profinite groups

Let A be a topological, separated, commutative ring and let § be a connected reductive group.

DEFINITION 2.3.1. A representation of the profinite group G is a continuous homomorphism
p:G—G(A);

here we equip G with the profinite topology and G(A) with the linear topology induced by A.
For example, let § = GL,;; we will consider the following kinds of topological rings A:
(i) Artin representations, i.e., A = C, equipped with its usual topology. Because all compact

totally disconnected subgroups of GL,,(C) are finite, these representations have finite im-

age. (Cf. PROPOSITION 2.3.2.)

(ii) Mod p representations, i.e., A is a finite field of characteristic p, or more generally, finite

rings, like IF, (the finite field with g elements) or (Z/p*Z)[X,Y]/(X*, (X +Y)?,Y7).

§2.3 Representations of profinite groups - 9 -



We shall always equip them with the discrete topology. These representations arise from
elliptic curves and modular forms, and they are the ones that Serre’s conjecture tries to

describe.

(iii) p-adic representations, i.e., A = Zp, Qp, or more generally a finite dimensional Qp-
algebra. In this case, A is endowed with its natural topology of normed vector space over
Qy, for which it is a topological Q-algebra. The image of Gg may be infinite (See the
Example 2.3.3 below).

(iv) Affinoid algebras over Q. These are the natural coefficients when considering families
of representations with coeflicients of type (iii), which are exactly the zero-dimensional

affinoid algebras.

(v) Any other interesting topological ring!

PROPOSITION 2.3.2. Suppose A = C and that G is a profinite group. Then every continuous

representation p : G — G(C) has finite image.

Proof. Ttsufficesto proveinthe case § = GL,,. We give C" the Euclidean norm: |(x1,...,x,)| =
/Y |xi]2. For each linear transformation T on C", we define || T|| = sup, |T(v)| where v runs
through the (7 — 1)-dimensional sphere of radius 1. Then || - || is a well-defined norm and the
topology of GL,(C) is given by || - ||.

We will show that the identity matrix 1 is an isolated point; hence, by the compactness the
image of p is finite.

Choosing a sufficiently small open (and hence compact) subgroup H of G, we may assume
that p(H) is contained in the open disk of radius  centered at 1. Suppose that T = p(u) # 1 for

u € H. If all eigenvalues of T equal to 1, then the Jordan canonical form of T has non-diagonal

entry. Thus for some large positive integer N, || TN — 1| > %, a contradiction. Then T has an
eigenvalue a # 1. If x| # 1, it is obvious that [« — 1| > I for some large integer |N/. If
|| = 1, the argument of & is small. Thus for an appropriate N, |« — 1| > 1, a contradiction.

This shows that p(H) = {1}. Since [G : H] < o0, p(G) is a finite group. |

§2.3 Representations of profinite groups - 10 -



Example 2.3.3. Let G be the absolute Galois group of Qover Q. Take A = Qpand § =Gy =
GL;. Let Hom(Gq, G/»(Qp)) denote the set of all continuous homomorphisms from Gg into
G (Qp). We have

Hom(Ggq, Gn(Qp)) = Hom(Gg, Z,; ) = Hom(Gq, ) x Hom(Gq, 1 +qZp),

where yt is the torsion subgroup of Z; and g = 4ifp = 2,9 = pif p # 2. Since 1 +gZ isa

pro-p abelian group, we have
Hom(Gq, 1+ 4Z,) = Hom (G ™, 1+ qZ,)

where Gg_ab is the largest abelian pro-p quotient of Gq. The Class Field Theory implies that if
S O S, := {v place of F| v|p}, then Gg_ab has positive Z-rank, hence there exists a continu-
ous representation p : Gg — GL1(Qp) with infinite image.

In this example, the assumption that S contains S, := {v place of F| v|p} is essential in

order to get “interesting” S-ramified Galois representation.

Remark 2.3.4. Let G be a connected reductive group over a number field F, and let Gr g =
Gal(Fs/F). Let K be a p-adic field with the ring of integers (. The generalization of class field
theory can be formulated as follows. Consider the space Yg = Hom(Grs, §(K)) with the

G(K)-action by conjugation.
(i) Find a ‘good” parametrization of the quotient space Xg = Hom(Gp g, 5(K))/G(K).

(i) Find a “large” complete noetherian local O-algebra A and elements p in Xg(A) =
Hom(Grs, 9(A))/SG(A) with “large” image.

There are two sources for these. Firstly, the Langlands correspondence. Secondly, the theory
of motives via p-adic realization. Langlands’ vision is that these two sources (arithmetic auto-
morphic forms and motives) give the same collection of p’s!

We have a blueprint for the future development programs as follows. Consider

(A) the set of arithmetic automorphic forms on G(AFr) with eigenvalues taking values in cer-

tain Kp;

§2.3 Representations of profinite groups - 11 -



(B) Y5(K) = Hom(Gr,s, §(K));

(C) Motives over F with coeflicients in Ko and good reduction outside of S.

. . ,
(A) arlthm;t)lcne:;ltomorphlc _________________________________________________ 2 - (C) motives
r

Ly Mp
(B) Yg(K) = Hom(Gr,s, 5(K))

From (A) to (B) we have global p-adic Langlands correspondence L, from (C) to (B) we have
the p-adic realization M) of motives. These two operations should be injective. Notice that the
sets (A) and (C) are just countable sets, but (B) carries a topology. It is hope that there is a map
from (A) to (C) linking these two, hence the image from (A) is contained in the image from (C).

For § = GL;(K), this is essentially equivalent to class field theory. For GL(Q), this pro-

gram still remains unproved.

For our purposes in this master thesis, we will be mostly interested in p-adic representation

G — GL;(K) where K is a finite extension of Q,, and in families of such representations.

§ 2.4. The p-finiteness condition

Let G be a profinite group. The pro-p-completion of the profinite group G is G() := @N G/N
where N runs through all closed normal subgroups whose index is a power of p. The p-Frattini
quotient of G is the maximal continuous abelian quotient of G which is of exponent p. We recall
the pro-p version of the Burnside Basis Theorem: Let G be a pro-p-group, and let Fr(G) be its
pro-p-Frattini quotient. Then any lifting to G of a basis of Fr(G) as a vector space over Z/pZ

is a set of topological generators for G.

DEFINITION 2.4.1. We say that the profinite group G satisfies the p-finiteness condition ®,, if
for all open subgroups Gg C G of finite index, there are only a finite number of continuous

homomorphisms from Gy to Z/pZ.
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The following lemma gives several equivalent statements of the p-finiteness condition.
LEMMA 2.4.2. Let G be a profinite group. The following conditions are equivalent:
(i) the pro-p-completion of G is topological finitely generated,
(ii) the abelianisation of the pro-p-completion of G is a Z.,-module of finite rank,
(iii) the p-Frattini quotient of G is finite,

(iv) the set of continuous homomorphisms from G to Z./ pZ. is finite.

Proof. Clearly, a set of topological generators of the pro-p-completion becomes a set of genera-
tors over Z in the abelianisation, and becomes a basis of the p-Frattini quotient as a vector space
over Z /pZ. Hence, it is clear that (i) implies (7i) and (ii) implies (iii). Since any homomorphism
G — Z/pZ must factor through the p-Frattini quotient, (i) and (iv) are equivalent. The pro-p
version of the Burnside Basis Theorem says that if the image in the p-Frattini quotient of a set
{g1,...,4+} of elements of the pro-p-group G(P) is a basis for the quotient as a vector space

over Z/pZ, then g1, . . ., gr topologically generate G(P), This shows that (iii) implies (7). [

Example 2.4.3. For K any number field, let Gk = Gal(K/K) be the absolute Galois group. The
structure of the Galois group G is not so well known. The Kronecker-Weber theorem asserts that
the natural surjection Gg — Gal(QY!/Q) = Z* induces an isomorphism G&b ~ 7% Let
Qs denote as the maximal extension of Q unramified outside a finite set S of primes and let G s

be the Galois group of Qg /Q. Here are two famous open problems:

Conjecture (SHAFAREVIC). (i) The absolute Galois group Ggab = Gal(Q/Q%») of Q* isa

free profinite group of countable rank, where Q2 is the maximal abelian extension of Q.

(ii) Is Gq,s topologically finitely generated?

Let us recall the theorem of Hermite and Minkowski, which is the first important fact about

Gks.

7

THEOREM 2.4.4 (HERMITE-MINKOWSKI). Let K be a finite extension of Q and let S be a finite set
of primes. If d is a positive integer, then there are only finitely many extensions L /K of degree d

which are unramified outside S.
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An important consequence of the theorem of Hermite and Minkowski is that the set
Hom(Gg s, Z/pZ) is finite, since each nontrivial homomorphism corresponds to an exten-
sion of degree p unramified outside S. Thus, if Gy C Ggq,s is an open subgroup then there exist
only finite number of continuous homomorphisms from Gy to Z/ pZ. Hence, any finitely ram-
ified Galois groups satisfy the p-finiteness condition ®,. This is an important example in the

deformation theory.
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Chapter 3

‘Deformation Theory

In these days the angel of topology and the devil of abstract

algebra are fighting for every mathematical domain.
Hermann Weyl
The basic situation we want to study is as follows. We are given a profinite group G and a
representation of G into matrices over a finite field k of characteristic p > 0. We try to under-
stand all possible lifts of this representation to GL, (A ), where A is a complete noetherian local
ring with residue k. It is not so clear what “understand all possible lifts” means, and so the main
goal of this chapter is to make our question more precise. We begin by recalling some facts of

the ring of Witt vectors, then we develop the correct problem of deformation we want to study.

§ 3.1. The ring of Witt vectors

The materials and the results in this section can be found in the Chapter 2 of Serre’s book [25].

Let K be a field which is complete under a discrete valuation v with residue field k of char-
acteristic p > 0. Let O denote the ring of integers of K and denote the uniformiser of O by .
Then the projection O — k has a unique multiplicative section which associates each A € k to
an element [A] € O called its Teichmiiller representative. In fact, the construction of this section
is:

A] = lim (/\/F’\>p

n—00
where AP denotes the unique element x € k such that x”" = A and ¥ denotes an lifting of x in
O. The limit is independent to the choice of the liftings of x and is a well-defined multiplicative

section. Denote the set of such multiplicative representatives in O by R.
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THEOREM 3.1.1. With previous notations, every element a € O can be written uniquely as a

convergent series
[o°]

a= Z[an]w”

n=0
with [a,| € R. Moreover, there exists polynomials So, S1,...,Sn,...and Py, Py, ..., Py, ... such
that if

a=Y la]@" and b=Y [b]a",
n=0 n=0
then we have
b [t
n=0

and

ab = i [Pn(agin,...,an,bgfn,...,bn)] "
n=0

The last theorem gives more naturally the definition of the Witt vectors which follows: if A is
an arbitrary commutative ring with identity, and if a = (ag,...,ay,,...), b = (bo,...,by,...)
are elements of AN, we denote W(A) as the set of such sequences with coefficients in A and

equip W(A) with the laws of composition defined below:

at+b = (So(ao,bo),...,Sn(ll(),...,an,bo,...,bn),...)
a-b = (Po(ao,bo),...,Pn(ao,...,an,bo,...,bn),...)

These make W(A) into a commutative ring with identity, called the ring of Witt vectors.

Remark 3.1.2. Forn > 1,let W,(A) = A" as a set. If p is invertible in A, we can equip W, (A)
with a structure of a commutative ring which is isomorphic to A”. For the sequence of rings

Wy, (A), consider the maps

Wn+1 (A) — Wﬂ (A)

(ag,aq,...,an) +— (ap,a1,...,4,-1).
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This is a surjective homomorphism of rings for each n. Then
W(A) ~ @Wn(A);
n

thus W(A) can be viewed as a topological ring.

Example 3.1.3. The ring of Witt vectors of the finite field of order p is nothing but the ring of
p-adic integers, thatis, W(IF,) = Z,.

Remark 3.1.4. We have a canonical homomorphism

W(k) — O
a=1(ao, ..., ay,...) — Y, [aﬁfn] @"
n=0

This map is always injective and makes O as a W(k)-module of rank e, absolute ramification

index. In particular, this map is a bijection if and only if O is unramified.

§ 3.2. The deformation functor

The strong motivation to study deformations of representations of profinite groups satisfying the
p-finiteness condition @, is that they play a crucial role in the proof of the modularity conjecture
for elliptic curves over QQ (work of Wiles, Taylor, Diamond, Breuil, and Conrad [31, 29, 2]).

In maximal generality, we begin with a profinite group G and a representation of G into
certain matrices over a finite field. The basic question is: can we describe all lifts of this repre-
sentation to appropriate p-adically complete rings? In order for the theory to work, we need to
know that G satisfies the concerned finiteness condition.

Let K be a finite extension of Q, with the valuation ring O, the maximal ideal m, and the
residue field k of characteristic p. Denote W to be the ring of Witt vectors with coefficients in k.
We let G be the algebraic groups GL1 or GL;.
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Consider the following topological spaces

Y =Yg := Hom(G, §(0)) Y :=Hom(G, §(k))
X = Xg:=Y/5(0) X :=Y/G(k)

where G(0©) and G(k) act on Y and Y via conjugation respectively. The reduction homomor-
phism ¢ : O — k induces serval homomorphisms: ¢ : G(O) — G(k), resp. ¢y : Y — Y, resp.

@x : X — X. We have the following commutative diagram:

Py

=
<o =
< — =
|

Tox
If o € Y, then the commutativity of the diagram reads as (o) = 7¢(p). Fix w(p) € X. If
7(p)" is close to 7t(p), there exists o’ € Y close to p such that o’ = p. In other words, the
neighborhood U = ¢! (77(p)) of 7t(p) in X is isomorphic to the quotient of V = Py L(@) by
its stabilizer Stab(V) in G(O); Stab(V) is the inverse image by ¢ of the centralizer of p:

Stab(V) = {g€5(0)|go's ' € Vorallp' € V}

SoU=V/¢ 1 Zs) = {p : G— G(O)}/¢~(Zp). Note that ¢! (Z5) contains the group
Z(O) of O-points of the center of G.

Let CNLy be the category of the complete noetherian local W-algebras A with a surjective
local homomorphism ¢ : A — k; the morphisms of CNL,y are the local W-algebra homomor-

phisms commute with the ¢’s. We will also denote by ¢ the corresponding group homomor-
phism G(A) — G(k).
DEFINITION 3.2.1. Fix a representation p : G — §G(k). For each object (A, ¢) in CNLyy, we

take Hy = ¢! (Zg). Consider the covariant functor 2 = %, called the problem of deformation
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of p:

2 :CNL,, — Sets
(A, @) — Ua=Va/Hpo=Va/9 '(Zp).

We call the element in Z(A) a deformation of p to A.

Remark 3.2.2. For any subgroup H C G(A), we say that two representations p; : G — G(A)
fori = 1, 2 are strictly equivalent with respect to H, written as pq s 02, if 2 = hp1h~! for some

h € H. Thus, a deformation of p to A is in fact a strictly equivalence class of p.

If (A,m) is a complete noetherian local ring with residue field k, then we have A =
@1” A/m
DEFINITION 3.2.3. We say that a functor .% on CNL, is continuous if the canonical morphism

F(A) = lﬁln F(A/m") is an isomorphism.
LEMMA 3.2.4. The deformation functor & is continuous.

Proof. We have to check this map Z(A) — im (A/m") is bijective. Note that for each n
the map G(A/m"*1) — G(A/m") induced by A/m" ! — A/m" is surjective.

For the injectivity, let p and p’ be two representations from G to G(A) such that for each
n > 1 there exists an element g, of G(A/m") such that for p,, := p (mod m") and p), := p’
(mod m"), we have g,ong, ' = o). For each nn the set X, := {gn € G(A/m")| guoug, ' =
ph} # @, and the transition maps induced by A/m"*! — A/m" define a projective system
of nonempty finite sets X;, 11 — X,;. The projective limit X := lﬁln Xy is therefore nonempty
and any element ¢ € X satisfies gog ! = p'.

For the surjectivity, let {0, } be a system of representations from G to G(A/m") such that
for each m > n > 1 there exists ¢, € G(A/m") such that p,; (mod m") = ¢,0.8, .
Starting from p’1 = p1, one can construct representations pi, conjugate to p,; such that p:l 11
(mod m") = p/, by induction. The system {p}, : G — G(A/m™)}, defines a representation p’

with values in G(A) whose class in Z(A) maps to the projective system {77(p,, ) } as desired. W
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Remark3.2.5. Let mgv be the full subcategory of CNL whose objects are artinian local rings
with residue field k. Notice that the maximal ideal of an artinian local ring is always nilpotent
and hence such rings are complete and noetherian. Note also that the objects of CNLy are pro-
objects of mg\,, that is, that any object of CNL,y is a projective limit of objects of mg\,.
The continuity of deformation functor & shows that & is completely determined by its values
on the full subcategory CNLY,. We will use this in a crucial way later, when we use the criteria

of Schlessinger for representability, which apply to functors on artinian ring.

§ 3.3. Pro-representability

The question we want to ask about our deformation functor is whether it is representable.

DEFINITION 3.3.1. We say that & is pro-representable by an object R in CNLy, if there exists
R € Obj(CNL,y) such that the covariant functor

hg : CNLY, — Sets

A = I_Io—mlocalg(Rl A)

is naturally isomorphic to #:

(a) For any object A € Obj CNLY,), there exist a bijection ¢ 4 such that
y Ob) JALINLyy )

%\
I_Io—mlocalg(Rl A) Y @(A)

(b) Forany mapa : A — A/, there is a commutative diagram

I_Io—mmcalg(R/A) l—A> Q(A)

zx*l l.@(a)

I_Io—mlocalg(R/A/) R @(A/)

lA/

Remark 3.3.2. Since the deformation functor Z is continuous, then it is pro-representable as a

functor on CNLY, if and only if it is representable as a functor on CNLy.
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LEMMA 3.3.3. The following two statements are equivalent:
(i) 2 is representable by R;
(ii) there exists ¢ € P (R) such that for allyy € P(A) there is a unique morphism a : R — A
in CNLyy such that 2(«) (&) = 1.
Proof. Suppose that (i) holds. Consider

iR + Homyo10 (R, R) ~ Z(R) and g (id) = ¢.

Since R represents 7, for all y € Z(A) there exists a morphism « : R — A in CNL,y such

that 14 () = 7 and such that the following diagram commutes:

I_Io—mmcalg(R/R) l_R> ‘@(R)

“*l .@(Dc)
@localg(RlA) - A)

Son =1u(a) =14(aoid) = (14 0ay)(id) = Z(a)(1g(id)) = Z(a)(&). This proves (ii).

Conversely, suppose (ii) holds. Given (R, {), we define 14 for each object A of CNL,y by:

[A:I_Io—mlocalg(RlA) = @(A)
x = Z(a)(C)

It is a bijection by assumption. Moreover, if A — A’, we have a commutative diagram:

I_Io—mlocalg(R/A) l—A> Q(A)

a*l l@(zx)

I_Io—mlocalg(R/A/) — ‘@(A/)

lA/
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because

I(a)oia(p) = 2()Z(B)(G) = Z(aop)(Q)
= 2(a+(B))(€) = ta(@:(B)) = tar o a:(B).

This proves (). [
PROPOSITION 3.3.4. If (R, §) exists, it is unique up to a canonical isomorphism.
Proof. Let (R, ) and (R’,&’) be two pairs, then for any A we have a bijection:

LA - —Homlocalg(R/ A)
b4

124 : I_Io—mlocalg(Rll A)

4/ 1 U
- JEE
=

14

Taking A = R’ (resp. /A = R), we obtain morphisms ¢ € Homsq, (R, R’) (resp. ¢ €
Homy 414 (R, R)) such that g (¢) = ¢’ (resp. (5 () = &). We now have to show that

¢o¢=idR/
lPO('DZidR.

To check second relation, for instance, it suffices to show that
iR(Po¢) =g.

This follows from the calculation

R(Pop) =2(Pod)(l) =2(¥)o2(¢)(C)
=2($) (i (9) = 2(9) () = k() =¢.

Similar calculation shows that (7, (¢ o ¢p) = ¢'. |
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DEFINITION 3.3.5. The pair (R, ¢) is called the universal pair.

For any object (A, ¢) in CNLyy, we set Hy = ¢~ 1(Z). For any morphism o : A — A’
in CNLy, we define a map, still denoted by &, from U4 = Hom(G,G(A))/Hy to Ua =
Hom(G, §(A"))/H given by 7t(p) — 7t(a 0 p).

COROLLARY 3.3.6. ¥ is representable by R if and only if there exists a continuous homomorphism
Y : G — G(R) such that for any object (A, ¢) in CNLyy and for any continuous homomorphism
p: G — G(A) with ¢(p) = p there exists a unique local ring homomorphism « : R — A such

that the map o : Ur — Uy sends 7t(p") to 7t(p).

DEFINITION 3.3.7. If 7 is representable by R, the ring R is called the universal deformation ring

of p, and the associated representation p* : G — G(R) is called the universal deformation of p.

§ 3.4. Schlessinger’s criteria

In this section, we first recall a result of Grothendieck for a covariant functor .% : mgv —
Sets such that .# (k) = ¢ to be pro-representable and then give useful criteria due to Sch-
lessinger for the pro-representability.

Notice that the two categories mgv and Sets admit fiber products: Given any two mor-

phismsa; : A; — Ag in CNL%V, we define their fiber product A3 = Aq X 4, A as

As = {(a1,az) € A1 X Ayl aq(a1) = an(a) }

mz = AzN(m; X m,).

We see that (A3, m3) is an object in mg\, and the projections B; : A3 — A; are morphisms
in CNLY,. We put Bg = a1 0 B1 = a0 .

Remark 3.4.1. The fiber product of noetherian rings does not need to be noetherian. Indeed, let
A =k[X,Y], B =kand C = k[X]. Letaw : A — C be the map that sends Y to 0 and let
B : B — C be the inclusion. The fiber product A X ¢ B is given by the subringk @ Y - k[ X, Y] in
k[X,Y]. The maximal ideal of A X Bis Y - k[X, Y], and the Zariski tangent space of A X ¢ B
may be identified with the k-vector space k[ X]|, which is infinite dimensional; that is, A X ¢ B is

not noetherian. This is the reason why we consider the smaller category CNL?,\,.
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Given two morphisms &; : A; — Ag in CNL%V, by the universal property of fiber products

we can get a natural map

F(B1)*x 78,7 (B2)
F (A1 x a4, A2) S

» F (A1) X 7(4y) F (A2). (3.1)
The result of Grothendieck for a pro-representable covariant functor .%# is characterized as fol-
lows:

THEOREM 3.4.2 (GROTHENDIECK [9]). The covariant functor .% is pro-representable if and only
if
(i) The map (3.1) is bijective.

(ii) .7 (k[e]) is a finite set.

As Mazur says in [20], the result of Grothendieck is difficult to use because its hypothesis is

hard to check for all diagrams

Aq As
oL 2
Ag

The following criteria of Schlesinger could be viewed as basically a simplification of this result.
THEOREM 3.4.3 (SCHLESSINGER [24]). Suppose the following four assumptions hold:

(H1) If ay is small (i.e., ay is surjective and ker () is principal and is annihilated by m 4, ), then

the map (3.1) is surjective.
(H2) Ifay : Ay — Ag is the quotient map k[e] := k[t]/ (t*) — k, then the map (3.1) is bijective.
(H3) The tangent space t z := 7 (k[e]) of F is a finite dimensional k-vector space.

(H4) If Ay = Ay, the maps a; : Aj — Ao are the same, and «; is small, then the map (3.1) is

bijective.

Then .# is pro-representable. In particular, there exists an object R in CNLy such that

ﬁ(A) = I_Io—mlocalg(R/A)
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for every object A in CNL?N.

Remark 3.4.4. The finiteness or finite-dimensionality condition is there to guarantee that the

representing object is noetherian. (Cf. COROLLARY 3.5.4.)

In the next chapter, we will apply the criteria of Schlessinger to the deformation functor
9 = Y5 : CNLy, — Sets

given by
9(A) = {deformations of p to A}.

§ 3.5. The Zariski tangent space and its cohomological interpre-
tation

We have shown that the deformation functor is continuous (cf. LEMMA 3.2.4). Suppose that the
condition (H2) holds. We can endow the tangent space ¢4 of &, defined by Z(kl[e]), with the

structure of a k-vector space as follows: Consider the local ring homomorphism which we will

»

simply label “+

kle] xkle] —— k[e]

(a+be,a+be) — a+(b+b)e
Let us apply Z to it and use the condition (H2). We then obtain a map
+:tg Xtg =ty

called the addition. It is easy to see that this is a law of an abelian group with zero element given

by p. Similarly, for A € k, we see the local ring homomorphism

kle] — kle]

a+be — a4 ble.
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Applying &, we then get a map called multiplication by A. These laws turn t4 into a k-vector
space.

Suppose that A is a complete local W-algebra with residue field k which is given as a projective
limit 1<£n A; of a collection of discrete artinian quotients, where i runs through some directed
index setlf .IWe let m and m; be the maximal ideals of A and A; respectively.

PROPOSITION 3.5.1. The following two statements are equivalent:
(i) A is noetherian;

(ii) dimy(m;/m?) is a bounded function of i.

Proof. Suppose that A is noetherian. Then m is generated, as an A-ideal, by a finite number d of
elements of m. Since m surjects to m;, we have dimy(m; / mlz) < d for each i, so (i) implies (ii).
Now assume that (ii) holds. We first claim that m? = 1<£n m{ for alla > 0. The assertion
iel

is trivial for a = 0, and we will proceed by induction on 4. Assume the statement holds for a and

consider the sequence of projective systems

0— m?“ —m! — m?/m§Zle — 0.

Assumption (ii) implies that m? / mf“ also has bounded dimension, so the system on the right
stabilizes. This implies that its limit is a finite dimensional k-vector space N. By the induction

hypothesis we have a short exact sequence

0— {iinim?“ —m? =N 0. Q)

Choose elements by, ..., b; of m” whose images in N form a k-basis of N. For each i we have

a surjection Al — m?, sending (x1,...,x7) to x1by + - -+ + x;b). Taking limits we deduce

from the induction hypothesis that m” is generated by by, ..., b; as an A-ideal. We now have

[ > dimg(m®/m?*1) > dim(N) = [, som?*! is equal to the kernel of the map m” — N. By
the sequence (©) above, this gives the induction step.

We now know that A is m-adically complete, and that m is a finitely generated A-ideal. The

graded ring G(A) = @,>om"/m*" is a finitely generated k-algebra, which is noetherian by
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Hilberts Basis Theorem. By [1], Corollary 10.25, this implies that A is noetherian. This show
(i). |

DEFINITION 3.5.2. Let A be a complete noetherian local W-algebra, and let m 4 be its maximal

ideal.

(1) The Zariski cotangent space of A is defined to be
tiz - mA/(m:IZq/ mW)/
where (m%, my) = m% + (image of myy) A. Note that % is a module over W /myy ~ k,

that is, it is a k-vector space.

(2) The Zariski tangent space of A is the dual space of the cotangent space:

tA = Homk(tjil,k).

Remark 3.5.3. Since A is noetherian, t is finite dimensional over k, so that there is no problem

with the duality here.

COROLLARY 3.5.4. If the deformation functor & is represented by a complete local W-algebra R,

then the ring R is noetherian if and only if t}, is finite dimensional.

Proof. Write R as a projective limit of its discrete artinian quotients R;. Let m; be the maximal
ideal of R;. Recall that W is noetherian, so that the k-dimension d of myy/ m%v is finite. It is
clear that dimy (m;/(m? + myR;)) and dimy(m;/m?) differ by at most d. Taking limit into
account, % is finite dimensional over k if and only if the dimension of m; /m? is bounded, which

by PROPOSITION 3.5.1 is equivalent to R being noetherian. |
The following lemma gives us a functorial interpretation of the Zariski tangent space:
LEMMA 3.5.5. If the deformation functor 9 is represented by an object R in CNLy, then there is

a canonical isomorphism of k-vector spaces

tr = Homy (g, k) = Homy,yo (R, kle]) = to.
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Proof. Let A = k[¢] andlet ¢ : R — A. Write ¢(r) = ¢o(r) + ¢1(r)e. We have, from
¢(ab) = ¢(a)p(b), that po(ab) = @o(a)po(b) and

@1(ab) = @o(a)p1(b) + @1(a)@o(b).

Thus, ker(¢g) = my = ke. Since ¢ is W-linear, ¢o(r) = 7 = r (mod mg), and thus ¢ kills

¢(r) =7+ ¢1(r)e. Hence, ¢1
kills W. Note that any element of 2 € R can be written asa = r + x withr € W and x € mg.

m% and takes mg W-linearly into ke. Forr € W,7 = r¢(1)

Thus, ¢ is completely determined by the restriction of @1 to mg, which factors through 5. We
can then write ¢ : ¥ + x — 7 + @1 (x)e and regard ¢y as a k-linear map from t} into k. Thus
¢ — @1 induces a linear map L : Homyoq1 (R, k[e]) — Homy (k. k).

Note that R/ (m%, myy) = k & t}. For any ¢ € Homy(t%, k), we extend ¢ to R/m% by
declaring its value on k to be zero. Then we define @ : R — A by ¢(r) = 7 + (r)e. Since €2 =

0, ¢ is a W-algebra homomorphism. In particular, L(¢) = ¢; hence, L is surjective. Since any

algebra homomorphism killing (m%, myy) is determined by its values on t%, L is injective. W
& P g (Mg y R ]

Letp : G — GLy(k) be a representation from G into GLy (k) and let M (k) be the set of

all 2 x 2-matrices with entries in k. We let G acts on M (k) by the composed map

G & GLy(k) 2% GL(My (k).

The k-vector space M (k) with the action of G is usually called the adjoint representation of p,
and is denoted by Ad(p).

PROPOSITION 3.5.6. Suppose that the deformation functor 9 = Y is represented by an object R

in CNLy. Then there is a canonical isomorphism of k-vector space

ty — HY(G,Ad(p)).

Proof. Letp € tg = 2(kle]) be a deformation of p to k[¢]. Since the maximal ideal (¢) of k|e]
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is principal and of square 0, the map

M (k) — ker(GLy(k[e]) — GLy(k))
X — 1+ Xe

is an isomorphism of groups. Thus, we can lift p to k[¢] and can compare p and p. This define an

element X (o) € My (k) by
p(e) =p(0) + X(o)p(0)e.

Moreover, 0 — X (o) is a 1-cocycle for the adjoint action:

= o (0)+X(U)ﬁ( 0)el - [p(e) ' p(oT) + X(T)p(0) ~'p(eT)e]
= plot) + [X(0) + Adp(e)X(7)]p(07)e.

Conversely, given an 1-cocycle X : G — My (k),

p(o) = p(o) + X(a)p(0)e

defines a deformation of p over kle], hence a class p € Z(k[e]).
Furthermore, if X is a coboundary, we have X(0) = (Adp(c) —1)Y forsome Y € My(k).

We have the following computation

p(e) =p(o) + X(0)p(c)e = p(o) + (Adp()Y —Y)p(0)e
= (I=Ye)-[p(c) +p(0)(Adp(0)Y)e]
(1—Ye)p(o)(1 + Ye).

Hence, We conclude that X is a coboundary if and only if p is conjugate to p for some element

in ker(GL,(k[e]) — GLy(k)). To complete the proof, we note that the zero element of t is p
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and it is sent to 0 in H' (G, Ad(p)). [

COROLLARY 3.5.7. Suppose that G satisfies the p-finiteness condition @,. If the deformation func-

tor 9 = Y5 is represented by an object R in CNLyy, then t 5 is a finite dimensional k-vector space.

Proof. Let Gg = ker(p). This is an open subgroup of G and the action of Gy on Ad(p) is trivial.
Note that

H’(G/Go, H'(Go, Ad(p))) = Hom(Go, Ma(k)) = Hom(Gy, k) @ Ma(k)
= Hom(Fr(Gy), k) @ Mz (k)

where Fr(G) is the pro-p-Frattini quotient of Go. The inflation-restriction sequence yields the

left exact sequence
0 — HY(G/Go,H"(Go, Ad(p))) — HY(G, Ad(p)) — H(G/Go, H'(Gy, Ad(p))).

The term on the left is finite since G /Gy and H(Gy, Ad(p)) are finite. The term on the right is

finite because of the p-finiteness condition @, for G. Hence, this lemma is proved. |
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Chapter 4

The Existence of the Universal ‘Deformation

Diese beklagen, daf$ man heute zu viel abstrakte Math-
ematik lernen mufs, bevor man sinnvoll arbeiten kann.
Diese Entwicklung ist zwar zu bedauern, doch darf man
nicht iibersehen, dafSsie uns andererseits mdchtige Hilfsmit-
tel in die Hand gibt, und es erlaubt, komplizierte Sachver-
halte einfach und klar darzustellen. Wer diese Metho-
den ablehnt, wird bei seinen TForschungen meist an der
Oberfliche bleiben miissen.

Gred Faltings

Let G be GL1 or GL;,. We will give rigidity conditions of the representation p : G — §(k)
and verify those conditions of Schlessinger’s criteria for our fixed deformation functor & of p in

this chapter. In the process, we shall see where these assumptions are needed.

§ 4.1. Verification of condition (H1)

The verification of Schlessinger criteria (H1) will not require any assumption.

For any representation p : G — G(A) and for any g € G(A), we write 8p for the

representation given by (80)(c) = ¢ - p(0) - g~ L.

Consider the cartesian square

A3LA2

ol s

Al —— A
451
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and the corresponding map
2(As) = P(A1) X g(a9) Z(A2). (3.1)

Assume that aq is surjective. We must show that (3.1) is surjective. Let (7t(p1), (p2)) €
PD(A1) X P(Az) such that Z(a1)(7t(p1)) = Z(a2)(7t(p2)), where the map 7t is defined as in

§3.2. In other words, we are given two continuous representations
pi:G—G(4;) i=1,2,
. -1
such that there exists go € ¢, (Z5) such thatforallo € G

p20(0) = p10(0)

where

pio = &;0p;: G = G(Ap)

is the push-forward of p; to A.

Recall that in algebraic geometry and in commutative algebra, a ring homomorphism f :
A — B is said to be formally smooth if it satisfies the following infinitesimal lifting property:
Suppose B is given the structure of an A-algebra via the map f. Given a commutative A-algebra
C, and a nilpotent ideal | of C, any A-algebra homomorphism B — C/] may be lifted to an

A-algebra homomorphism B — C. That is to say, the canonical map
Hom 4 (B,C) — Homy(B,C/])

is surjective. Formally smooth maps were introduced by Alexander Grothendieck in Eléments de
Géométrie Algébrique [10], IV, Définition (19.3.1). There are also several equivalent definitions
of smoothness to be found in EGA IV. The fact that f is smooth if and only if f is locally of finite
type and formally smooth is proved in EGA 1V, Corollaire (19.5.4).

Since G is smooth and a1 is surjective, the map G(A1) — G(Ap) is surjective by the formal

smoothness of §. Hence g9 = a1(g1) for some g1 € G(A1) and g1 € qo;ll (Z5), since @4, =
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@4, © a1. Letting o] = 81pq, then we have pj; = pao. Therefore, p| and p, have the same
image in G(Ay), and p3 = (o7, p2) takes values in G(A1) X g(4,) G(A2) = G(A3); moreover,
7(p3) € 2(A3) and 2(Bi)(7t(p3)) = 7e(pi)-

§ 4.2. Verification of condition (H2)

We will study the injectivity properties as stated in conditions (H2) and (Hy).

If 71(p3) and 77(p%) have the same image, this means we are given two representations
p3, P3: G = 5(4s)

H; . _ . . .
such that p3; ~ p}; fori = 1,2, with H; = goAil (Z5). That is, there exist g; € H, fori = 1,2,
such that pf; = 8ip3;. Pushing these equalities to Ag, we obtain o5, = $10p39 = $20p3.

Consider the condition (H2), namely, if A — Ag is the quotient map k[e] — k. In this case,

81_01820 € Zﬁ.

Note that the centralizer Zj of p is contained in the center Zg of G, where G = §G(k); note also
that the center Zg of G is GL; which is formally smooth over W.

Since GL1 is smoothand &y : A7 — Ay is surjective, the map G(A1) — G(Ap) is surjective
by the formal smoothness of GL;. Therefore, we can lift zg = gl_o1 g0toz; € Zg(Aj)andg) =
9121 satisfies g7, = g20. Hence, we define g3 = (g7,82) € (A1) X g(a,) 9(A2) = G(As3).
We thus have g3 € qo;hl (Z5) and p5 = 833 as desired, and this shows that (H2) is true.

§ 4.3. Verification of condition (H3)
Let Gy = ker(@). We let G be the formal group of G defined by

G(A) :=ker (¢ : G(A) = §(k)).

o~

Suppose that p is a lift of p to k[e]. If x € Gp, we have p(x) = 1, and hence p(x) € G(kle]).
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Hence, p determines a map from Gy to §(k[e] ). Two lifts that determine the same map must be
identical.

We see that the formal group
S(k[e)) = {1+ Xe | X € Ma(k)}

is a p-elementary abelian group and that Gy is an open subgroup of G. By the p-finiteness
condition @y, there are only finitely many maps from Gy into G(k[e]). Hence, Z(kle]) is a finite

set. We also have shown that Z(k[e]) itself is a k-vector space in §3.5, and therefore we are done!

Remark 4.3.1. This proof relies on the facts that k is a finite field and that the profinite group G

satisfies the p-finiteness condition <I>p.

S 4.4. Verification of condition (H4)
Let Zg be the formal group of Zg, that is, Zg = ker(Zg(A) — Zg(k)).

LEMMA 4.4.1. If Z5 = k, then for any object A in CNL), and 7t(p) € Z(A) we have Z, N
§(4) C Zg(4),

Proof. We denote the deformation of p to C by pc for any object C in CNLY,. We let
Zyo(C) = {P € Lie(S)(C) | Ppc(0)P~! = pc(0) forall o € G},

where Lie(G)(C) = M;(C) or My (C) respectively.
Since the map A — k is surjective, it factors as a sequence of small extensions. Since Z5 = k,

this lemma will follow by induction from the following claim:

Claim: If A — B is small and if Z,, (B) N G(B) C Zg(B), then we have

Zo,(A) N(A) C Zg(A).
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Letz € Z,,(A)N G(A). Let X be the image of z in Zpy(B)N G(B). By our hypothesis, ¥ €
Zg(B). Let x € Zg(A) be alift of X. Suppose that z — X. Then we can write z = x - (1 + tY)
where t is a generator of the kernel A — Band Y € Lie(G)(A).

Since z commutes with the image of p 4, we must have for every o € G,
(X1 4+ txY)pa(0) = pa(o)(x1 + txY).

This gives
Yoa(o) =pa(0)Y.

Reducing modulo the maximal ideal m 4 and using the fact Z5 = k, we see that Y is of the form
Y = all 4+ Y7 where a € A and the entries of Y7 belong to m 4. Since A — B is small, we have
tmy = O; it follows that z = x - (ta + 1)1 € Zg(A). |

Suppose that Z; = k. We will now verify the condition (H4) of Schlessinger’s criteria.
Consider a diagram in CNLY,

AgLAl

|

Al —_— AO
51

and assume that aq : Ay — Ay is surjective. Given 7t(p3), 77(p3) € Z(As3) with same images
in 7(A1) X g(ay) Z(A1). In other words, we are given two representations p3 = (p1,02) :
G — G(As) and p§ = (0},05) : G — G(Aj3) such that for i = 1,2 there exists g; € G(A1)
we have p] = 8ip;. Let p3g = @1 0 p1 = & © pp and similarly for pf,. Composing with a1, we
obtain

/
P30 = 810030 = $%p3g

hence zg = gl_o1 820 € Zpz N §(A0). From the previous lemma, Z, M §(A0) consists of the
scalar matrices in §(A0) if G = GL; or GL,.
We have a; : Zg (A1) — Zg(Ay) is surjective by the formal smoothness. Hence there exists

zZ1 € 29 (A1) mapping to zq such that by putting ¢} = z191 = g121 € §(A1), we have

g = (81,82) € G(A3)
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and
o5 = (01, 0h) = (B1p1,%205) = Fp3.

That is, 77(p3)" = 7t(p3), and the condition (Hy) is true.

§ 4.5. The main theorem

The upshot is:

THEOREM 4.5.1 (MAZUR [20], RAMAKRISHNA [23]). Let G be GL1 or GL,. Suppose that G is
a profinite group satisfying the p-finiteness condition ®, and p : G — G(k) is a continuous
representation such that Zs = k. Then there exists a ring R in CNLyy and a deformation p" of p
to R,

p" G — G(R)

such that any deformation of p to a complete noetherian local W-algebra A is obtained from p" via

a unique morphism R — A.

§ 4.6. Absolutely irreducible representations

The hypothesis that Z; = k plays an important role in the main theorem. Itis of great significance

to ask which representations have this property.

DEFINITION 4.6.1. (1) A representation p : G — G(k) is said to be reducible if the

representation space has a proper subspace that is invariant under the action of G.
(2) Itis said to be irreducible if no such subspace exists.

(3) We say that p is absolutely irreducible if there is no extension k' /k such that p @ k' is

reducible.

Example 4.6.2. The irreducible two-dimensional representation of the symmetric group S3 of

order 6 over Q is absolutely irreducible.
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Example 4.6.3. The representation of the circle group by rotations in the plane is irreducible
over IR, but is not absolutely irreducible. After extending to C, it splits into two irreducible
components. This is to be expected, since the circle group is commutative and it is known that
all irreducible representations of commutative groups over an algebraically closed field are one-

dimensional.
The following theorem can be found in any standard textbook on group representation

theory. For example, see Chapter 1 of Serre’s book [26].

THEOREM 4.6.4 (SCHUR’S LEMMA). If the representation p : G — G(k) is absolutely irreducible,
then Z5 = k.

Hence, absolutely irreducible representations have universal deformations. However, there

is important other case where p is not irreducible but still satisfies Z5 = k.

PROPOSITION 4.6.5. Let k be any field, and let V be any representation of G with a G-stable
filtration Vi C Vo C -+~ C V,; = V such that:

(a) Vii1/V;is one-dimensional with G acting by xi;

(b) The x; are distinct;

(c) The extension V;/V;_1 — Vii1/Vi_1 — Vii1/V; is non-split for all i.
Then Z5 = k.
Proof. Let M € Zz. We claim that M is a scalar. We first note that V; is the unique one-
dimensional subspace on which G acts via x7. For if V| were another, we could build a Jordan-
Holder series V4 C V3 U V[ C - - - and thus 1 would appear at least twice in the Jordan-Holder
decomposition which cannot happen since x; are distinct.

It follows then that M preserves V7 and by induction preserves the whole flag. Let M act on

V1 by multiplication by a. We will show that M = all. Consider M —al : V' — V. This element

M — all is also in Zg. Since M — all |y, = 0, it factors as a morphism

T:V/V; = V.
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By induction, the induced map V' /V; — V / V] is G-invariant which is multiplication by a scalar
b.Ifb # 0,then T |y, would give a splitting of the extension where i = 1 and so we can assume
b=0.

Thus, T is actually a G-invariant map V/V; — V. If T = 0, then we are done, else let
V; be the first subspace on which it is non-trivial. Then T : V;/V;_1 — Vj is a G-module

isomorphism, contradiction. |

§ 4.7. Example: the case GL,

For§ = GLjandp : G — k™, we see that the assumptions Z; = k and the center of GL; is
formally smooth over W are trivially fulfilled. We will compute R = R" and p" in this section.

Consider the deformation p of p to A, i.e., a character
p:G— A™.

Since A € Obj(CNLyy), the reduction morphism A — k has a multiplicative lifting w4 :
k> — A* called the Teichmiiller lifting which is functorial: if A 5 B — k,thenaowy = ws.

Write p(0) = wop(0) - {p)(c) with (p)(c) =1 (mod m). Since 1 4+ m is pro-p abelian,
the character (o) factors through the maximal p-abelian quotient G of G. We define Py :

W[GP2P] — A as the unique local W-algebra homomorphism such that for all o € GP-2P

where [07] denotes the corresponding element of ¢ in the group ring W[GP-2P].

PROPOSITION 4.7.1. For G = GLy, the universal pair (R", p*) is given by

RY — W[[Gp,ab]]
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and

ot G — W[GPP]

o = w(p(e)) - [o]

where o — 0P is the projection G — GP/2P,

Proof. By the p-finiteness condition ®,, we know that GP2P s finitely generated as a Z)-
module. If 7 is the number of generators, then W[GP-?*] is a quotient of the power series ring
W{ty,...,t ] and, therefore, is a complete noetherian local W-algebra.

Take any deformationpof pto A, i.e,p : G — A, we getalocal W-algebrahomomorphism
o : W[GP] — A uniquely determined by the condition

But we have

Po(0"(0)) = Pp(w(p(0)) - [o"*])
(P(0) o (o))
(p(2)){p) (o)

= p(0),

w
= w

that is, P o p" = p. Thus W([GP2] is the universal deformation ring and p" defined above is

the universal deformation of p. [ |

Remark 4.7.2. If we fix an topological group isomorphism GP2 ~ H x Z., where H is a finite

group, we obtain a local W-algebra isomorphism
W[GP*] ~ W[t, ..., t][H].

That is, the universal deformation ring is the group algebra of a finite group over an Iwasawa

algebra, ring of formal power series in r variables over W.
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Appendix A

Categories and Functors

1t is my experience that proofs involving matrices can be
shortened by 50% if one throws the matrices out.

Emil Artin, Geometric Algebra

The language of categories and functors is a particularly convenient way to think about the
deformation theory. We will introduce the concept of categories to serve as a useful tool and to
provide a general context for dealing with a number of different mathematical situations in this

master thesis. The more details and materials are contained in the book of Mac Lane [19].

§ A.1. Categories
DEFINITION A.1.1. A category € is defined by the following two data:
« a collection of objects of €, denoted by Obj(<);

o For any A and B in Obj(C€), there is a set Homg (A, B) and referred to as the set of

morphisms from A into B.
satisfying the following rules:

(a) For any A, B and C in Obj(€), there is a rule of composition for morphisms, i.e., a

mapping: Home (A, B) x Homg (B, C) — Home(A,C) : (f,g) — go f;

(b) (Associativity). For any three morphisms: A i) BSch D,wehaveho(go f) =
(hog)of;
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(c) Foreach A in Obj(€), there is an element 14 € Homg(A, A) suchthat14 o f = f and
goly=gforallf:B— Aandg: A — B.

We list some examples of categories which are frequently used in this master thesis:

Example A.1.2. The collection of all sets forms a category which we denote by Sets. For A, B €
Obj(Sets), the set Homges (A, B) is nothing but the set of all mappings from A into B; the

composition of morphisms is the usual composition of mappings.

Example A.1.3. The collection of all abelian groups forms a category which we denote by Ab.
For A, B € Obj(Sets), the set Homay, (A, B) is the set of all group homomorphisms from A

into B.

Example A.1.4. Let O be a discrete valuation ring of characteristic 0 with the maximal ideal m.
Suppose that k = O /m has characteristic p > 0. The collection of all complete noetherian local
O-algebras A with ¢ : A/m, — k forms a category which we denote by CNL,. For any A,
B € Obj(CNL,), the set Homeny,, (A, B) is the set of all local O-algebra homomorphisms

commute with the ¢’s.

Example A.1.5. Let G be a profinite group. We define Mod; to be the category consisting of

discrete G-modules with continuous G-action and continuous G-linear maps.

Example A.1.6. If € is a category, then we can get another category €°PP by keeping the objects,
but putting Homgopp (A, B) = Homg (B, A). It is a easy to verify that €°PP is a category. It is
called the dual category of C°PP,

DEFINITION A.1.7. (1) A category € is a subcategory of € if the following two conditions are

satisfied:
(a) Each object of € is an object of € and Homy/ (A, B) € Homg (A, B);
(b) The composition of morphisms is the same in € and in €’.

(2) A subcategory € is called a full subcategory of € if Homg/ (A, B) = Homg (A, B) for any
two objects A, B in €’.
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Example A.1.8. Let Rel be the category whose objects are sets and whose morphisms A — B

are relations R C A x B. Two relations R € A X Band S C B x C may be composed via
SoR = {(a,c) | thereexistsb € B, (a,b) € Rand (b,c) € S}.

Category Rel has the category of sets Sets as a subcategory, where the morphism f :
A — B in Sets corresponds to the functional relation F C A X B defined by: (a,b) €
F ifand only if f(a) = b.

Example A.1.9. The collection of all artinian local rings in CNL , forms a full subcategory which
is denoted by CNL%. Notice that the maximal ideal of an artinian local ring is always nilpotent
and hence such rings are complete and noetherian. The objects of CNL, are pro-objects of

CNLY,, that is, that any object of CNL,, is a projective limit of objects of CNLY,.

S A.2. Functors

DEFINITION A.2.1. Let € and ® be two categories. A covariant (resp. contravariant) functor
F : € — D is a rule associating an object .Z(A) of © and a morphism .7 (f) €
Homg (% (A), Z(B)) (resp. Z# (f) € Homg (.7 (B),.#(A))) to each object A of € and each
morphism f € Homg (A, B) satisfying

F(fog)=F(f)oF(g)  (resp..#(fog)=F(g)oF(f)

and

Z(14) = 17(a)-

Example A.2.2. Let G be a profinite group. The association of the G-invariant submodule to

each object in the category:
M HY(G,M)=M®:={mecM|gm=mforallg € G}

is a covariant functor from Mod; into Ab, called the fixed module functor. Each G-linear
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homomorphism ¢ : M — N induces ¢ : M® — NC by G-linearity.

Example A.2.3. The category of covariant functors Fun(€, ) from the category € to the
category ® is defined by letting the objects be the covariant functors from € to ®©, and for two
such functors .# and ¢ we let

Homl::u_n(qlfg) (ﬁ, g)

be collections {¥ 4} scopj(e) of morphisms ¥4 : F(A) — % (A), such that whenever f €

Homg (A, B), then the following diagram commutes:

Ya

N
=
B
=

The morphisms of functors are often called natural transformations. The commutative diagram
above is then called the naturality condition. If, for every object A in €, the morphism ¥ 4 is
an isomorphism in ®, then Y is said to be a natural isomorphism or sometimes isomorphism of
functors. Two functors .# and ¢ are called naturally isomorphic or simply isomorphic if there

exists a natural isomorphism .% to 4.

§ A.3. Representability

Let € be a category, and let A € Obj(€). We define a contravariant functor h4 : € — Sets by
h4(B) = Homg(B, A) for any object B in €. For a morphisms f : By — By, we let

hA(f) : Homg(Bz,A) — HOIIle(Bl,A)

by ¢ — g o f. We extend a notation from algebraic geometry, and refer to the functor h 4 as the
functor of points of the object A. We also refer to the set h4(B) = Homg(B, A) as the set of
B-valued points of the object A in €.

DEFINITION A.3.1. A contravariant functor .%# : € — Sets is said to be representable by the

object A of € if there is an isomorphism of functors ¥ : hy — .%.
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FAcT A.3.2. Two objects A and B in the category € are isomorphic if and only if the functors h 4

and hp are isomorphic.

Given a contravariant functor .# : € — Sets. Let A be an objectin €, and let & € F(A).

For any object B of €, we then define a mapping as follows:

CI)B:hA(B) — ﬁ(B)
fo= FHE)

This is a morphism of contravariant functors ® : hy — .#.

FACT A.3.3 (YONEDA’S LEMMA). The functor % is representable by the object A if and only if there
exists an element § € % (A) such that the corresponding ® is an isomorphism of contravariant

functors. This is the case if and only if all g are bijective.

DEFINITION A.3.4. We say that the object A represents the functor .# and that the element

¢ € Z(A) is the universal element.

This language is tied to the following universal mapping property: Forall elementsy € .7 (B),

there exists a unique morphism f : B — A such that

F(F)E) =1

Remark A.3.5. For the covariant case, we define h* : € —  Sets by setting h(B) =

Homg (A, B) for any object B in €, which is a covariant functor. We then similarly get the

notion of a representable covariant functor € — Sets. Of course this amounts to applying the

contravariant case to the dual category €°PP.
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Appendix B

Cohomology for Profinite groups

Algebraic geometry seems to have acquired the reputation of
being esoteric, exclusive, and very abstract, with adherents
who are secretly plotting to take over all the rest of

mathematics. In one respect this last point is accurate.
David Mumford

In this appendix, we recall the construction of group cohomology theory and study the basic
properties. The bible for this subject is Serre [27], in conjunction with [25] or [3]. Haberland [11]

is also an excellent reference.

S B.1. G-modules

We fix a profinite group G.

DEFINITION B.1.1. (1) An abstract G-module M is an abelian group M together with an
action G x M — M : (g,m) > gm such that Im = m, (¢gh)m = g(hm) and
g(m+n)=gm-+gnforallg,h € G,m,n e M.

(2) A topological G-module M is an abelian Hausdorff topological group M endowed with the

structure of an abstract G-module such that the action G X M — M is continuous.

(3) Byadiscrete G-module M, we mean that M is a topological G-module such that the action

G x M — M is continuous for the discrete topology on M.
For a closed subgroup H C G, we denote the subgroup of H-invariant elements in M by
MH e,
MH ={me M|hm=m forallh € H}.
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Fact B.1.2. Let G be a profinite group and let M be an abstract G-module. Then the following

statements are equivalent:

(i) M is a discrete G-module;
(ii) For everym € M, the subgroup G, := {g € G | gm = m} is open;

(iii) M = |J MY, where U runs through the open subgroups of G.
8! 4

In this master thesis, we are mainly concerned with discrete modules, and so the term G-

module, without the word “topological” or “abstract”, will always mean a discrete module.

§ B.2. Cohomology for profinite groups

We fix a profinite group G. Let G acts on G" by left multiplication. The cohomology for G arises

from the diagram
=G X G XG=—GXG—=(,

the arrows being the projections d; : G"f! — G" for each i = 0,...,n given by
di(oo,...,0i-1,0;,0i+1,...,0,), where by 0; we indicate that we have omitted o; from the
(n+1)-tuple (0p, ..., 0n).

We assume that all G-modules to be discrete. For every G-module M, we form the abelian
group X" = X"(G, M) = Map(G"*!, M) of all continuous maps x : G**1 — M. X" is a
G-module by (cx)(cp, . ..,0n) = ox(c 1og,...07 0y). The maps d; : G"*! — G" induce

G-module homomorphisms d : X"~ — X", and we form the alternating sum
n .
o" =Y (=1)df : X" = X"
i=0

Fact B.2.1. The sequence

0 MLy x0 2, x1 & x2 @

S e e

is exact.
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We apply the functor “fixed module”, and set for n > 0
C"(G, M) = X" (G, M)C.

C™"(G, M) consists of the continuous functions x : G**1 — M such that x(coy, ...,00,) =

ox(0y,...,0n) forall o € G. These functions are called the n-cochains of G with coefficients in
M.

From the FAcT B.2.1, we obtained a sequence
1 2 3
(G, M) -5 cl(c, M) -5 G, M) L -
which is no longer exact in general; but it is still a complex, i.e., "1 0 8" = 0. We now set

n n o"t! n+1
Z'"(G,M) = ker(CHG,M) 2= C"1(G,M)),
B"(G,M) = im(C"Y(G, M) - C*(G,M)),

and B’(G, A) = 0. Since 3"T!1 09" = 0, we have B*(G, M) C Z"(G, M). The elements of
Z"(G, M) and B" (G, M) are called the 11-cocycles and n-coboundaries respectively.

DEFINITION B.2.2. For each n > 0, the quotient group
H"(G,M) =Z"(G,M)/B" (G, M)

is called the n-dimensional cohomology group of G with coefficients in M.

FACT B.2.3. If G is a finite group and M is a finite G-module, then H" (G, M) is a finite module
foreachn > 0.

FACT B.2.4. Forn = 0,1, and 2, the groups H" (G, M) admit the following interpretations:
(i) Forn = 0, we have H*(G, M) = MC;
(ii) Forn =1, we have

oo (4G5 M Ix(oT) = ox(e) + ¥e) Vo T € )
H(G,M) = {x:0— (c—1)m|me M} '
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(iii) For n=2, we have

H2(G, M)

_ {x: G?> = M | x(o7,p) + x(0,7) = x(0, T0) + 0x(T,p) YO, T,0 € G}
{x:G* = M| x(,7) = y(0) —y(or) +oy(1)}

7

with arbitrary y : G — M € CY(G, M).

Let {1, <} beadirected set. Let { T; } ;| be a family of objects indexed by I and f;; : T; — T;

be a homomorphism for all i < j with the following properties:
(a) fi; is the identity of T}, and
(b) fik = fjxo fijforalli <j<k

The triple Z = {I, T;, fi;} is called a directed system. The underlying set of the direct limit, T,
of the direct system Z = {1, T;, f;;} is defined as the disjoint union of the T;’s modulo a certain
equivalence relation ~:
limy T; = || T; / ~
I i€l
Here, if t; € T;and t; € Tj, t; ~ t; if there is some k € I such that fi(t;) = fi(t;).
Let U, V runs through the open normal subgroups of G. If V' C U, then the projections

Gl — (G/V)™1 - (G/U)"*! induce homomorphisms
c'(G/u,M4) = c(G/v,M") — C"(G, M),

which commute with the operators 3”1, We thus obtain homomorphisms
H"(G/u,MY) — H"(G/V,M") — H*(G, M).

The groups H"(G/U, MY) form a direct system and we have a canonical homomorphism

lim H"(G/U, MY) — H"(G, M).
—Uu
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FAcT B.2.5. The above homomorphism is an isomorphism:

lim H"(G/U, MY) — H"(G,M).
u

FACT B.2.6 (THE INFLATION-RESTRICTION EXACT SEQUENCE). Let U be a closed normal subgroup
of G, and suppose that H™ (G, M) = 0 forallm = 1,2,...,n — 1. Then the following sequence

is exact:

0 — H"(G/U,MY) — H"(G,M) — H(G/U,H"(U,M))
— H""YG/U, MY).
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