English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52621239      Online Users : 385
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/54583
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/54583


    Title: 可轉債評價 --- LSMC考慮股價跳躍及信用風險
    Convertible Bond Pricing --- Consider Jump-diffusion model and credit risk with LSMC
    Authors: 丁柏嵩
    Contributors: 廖四郎
    丁柏嵩
    Keywords: 最小蒙地卡羅法
    跳躍擴散模型
    CIR利率模型
    存活函數
    信用違約強度(CIR)
    Least- squared Monte Carlo
    Jump-diffusion Model
    CIR interest rate model
    Survival function
    Hazard rate function(CIR)
    Date: 2011
    Issue Date: 2012-10-30 11:24:13 (UTC+8)
    Abstract: 可轉換公司債是一種在持有期間內,投資人可以在規定的時間內將債券轉換為股票,或是到期時得到債券報酬的一種複合式證券。因此,可轉債除了具有債券性質之外,還包含另一部份可視為一美式選擇權的股票選擇權。
    本篇論文將可轉換債券評價結合數值分析中的最小蒙地卡羅法(Least square monte carlo),使得在評價可轉債時,能夠具有更多的彈性處理發行公司自行設計的贖回條款與其他各種不同的契約情況。
    此外,本篇論文針對股價考慮跳躍的性質,使用Compound Poisson 過程模擬發生跳躍的次數,導入Merton的跳躍模型(Jump-diffusion Model),在Merton的假設下,模擬未來股價的動態變化。
    信用風險方面,本文採用Duffie提出的風險CIR模型評價。考慮存活函數(Survival Function)和違約強度(Hazard Rate Function),使用CIR模型描述信用違約強度在可轉債持有期間的動態變化,最後模擬出違約的時點,結合LSMC下的可轉債評價評價法。
    最後利率部份,雖然Brennan and Schwartz(1980)認為隨機利率對於可轉換債券的評價,並沒有明顯的效果,反而會降低評價時的效率,但是為了符合評價過程的合理性,本文使用CIR短期利率模型。
    Reference: 康怡禎,(2008)。跳躍幅度與跳躍頻率相依下馬可夫跳躍擴散模型在財務金融之實證分析,國立東華大學應用數學系碩士論文。

    Darrell Duffie and Kenneth Singleton, “Modeling Term Structures of Defaultable Bonds.” The Review of Financial Studies, Volume 12, Issue 4(1999), 687-720.

    Darrell Duffie and Kenneth J. Singleton, "Credit Risk: Pricing, Measurement, and Management." p.66-p.74,Chapter3.

    D. Brigo and F. Mercurio(2006), “Interest Rate Models: Theory and Practice.” p.26-p.34, Chapter2. Second edition, Springer Verlag.

    Li, David X., On Default Correlation: A Copula Function Approach, Journal
    of Fixed Income, March 2000, pp. 41-50.

    Longstaff and Schwartz(2001), “Valuing American Options by Simulation: A Simple Least-Squares Approach.” The Review of Financial Studies, Volume 14, No.1, 113-147.

    Simona Svoboda, “Interest rate modeling.” Chapter 2 . The Cox, Ingersoll and Ross Model

    Steven E. Shreve, “Stochastic Calculus for Finance II.”
    Description: 碩士
    國立政治大學
    金融研究所
    99352010
    100
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0099352010
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2325View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback