政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/54311
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114012/145044 (79%)
Visitors : 52102364      Online Users : 461
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/54311


    Title: 匯率報酬模型之非線性調整及可預測性
    Nonlinear adjustment and predictability of exchange rate returns models
    Authors: 陳紹珍
    Contributors: 廖四郎
    陳紹珍
    Keywords: 匯率預測
    時間序列
    倒傳遞類神經網路
    非線性調整
    Exchange Rate Forecasting
    Time Series
    Back-propagation Neural Network
    Nonlinear Adjustment
    Date: 2011
    Issue Date: 2012-10-30 10:42:23 (UTC+8)
    Abstract: 在全球經貿體系自由化下,國際資金流通快速,匯率變動也非常頻繁,廠商的產銷決策與營運,面對匯率風險更加難以掌控。如何掌握匯率的變動,並採取有效的避險措施,是廠商從事貿易必須面臨之重要課題。本研究採用自我迴歸整合移動平均模式、倒傳遞類神經網路及混合式自我迴歸整合移動平均模式及倒傳遞類神經網路模型進行未來即期匯率報酬率之預測。試圖找出合適的新台幣兌美元即期匯率之預測模型,並將其應用於外匯避險操作。
    研究結果顯示,關於預測誤差的績效表現,整體來說,以自我迴歸整合移動平均及倒傳遞類神經網路混合式模型表現最佳,顯示傳統時間序列模型捕捉匯率報酬率走勢之能力,藉由倒傳遞類神經網路捕捉其線性預測誤差中非線性的部分,可更符合資料的特性,加強匯率報酬率預測的準確性。考慮預測方向的正確性,在兩個不同的準則下(SR、PT),皆以自我迴歸整合移動平均模型表現最差,代表其在進行匯率報酬率之預測時正確率較為不足。而在PT檢定當中,倒傳遞類神經網路模型及混合式模型皆達到顯著。因此利用人工智慧模型對報酬率之方向進行預測是有效的,又以自我迴歸整合移動平均及倒傳遞類神經網路混合式模型表現最好。總結來說,利用倒傳遞類神經網路模型針對自我迴歸整合移動平均模型做非線性的調整,同時涵蓋未來匯率報酬率線性與非線性的部分,使得自我迴歸整合移動平均模型之預測誤差、方向準確性皆得到改善,藉由倒傳遞類神經網路捕捉其線性預測誤差中非線性的部分,可更符合資料的特性,加強匯率報酬率預測的準確性。
    Reference: 李志宏(1996),「倒傳遞類神經網路與自我迴歸整合移動平均、計量分析及遠期匯率模式在匯率預測績效上之比較」,成功大學會計研究所碩士論文。
    邱至中(2003),「長短期匯率預測模式績效之比較」,國立成功大學財務金融研究所碩士論文。
    周宗南、劉瑞鑫(2005),「演化式類神經網路應用於台股指數報酬率之預測」,財金論文叢刊,第三期,77-94。
    陳學毅(2004),「匯率預測模型績效之研究—時間序列及灰色預測模型之應用」,東海大學國際貿易研究所碩士論文。
    Al-Alawi, S. M., Abdul-Wahab, S. A. and Bakheit, C. S.(2008), “Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone,” Enviromental Modeling and Software, 23, 396-403.
    Chiang, Y. C., Liao, T. L. and Hsiao, T. A. (2011), “Evaluating hedging strategies in the foreign exchange market with the stochastic dominance approach,” Applied Financial Economics, 21, 493-503.
    Eaker, M. R. and Grant, D. M. (1990), “Currency hedging strategies for internationally diversified equity portfolios,” Journal of Portfolio Management, 17, 30-32.
    Fang, H and Kwong, k. k. (1991), “Forecasting Foreign Exchange Rate,” Journal of Business Forecasting, 16-19.
    Hazuka, T. B. and Huberts, L. C. (1994), “A valuation approach to currency hedging, ” Financial Analysts Journal, 50, 55-59.
    Jeong, J. G.(2000), “What drives exchange rate: the case of the yen/dollar rate,” Multinational Business Review, 8, 31-36.
    Leung, M. T.(2000), “Forecasting Exchange Rates Using General Regression Neural Networks,” Computers and Operations Research, Volume 27, Issues 11-12,1093-1110.
    MacDonald, R. (1998), “What determines real exchange rate? The long and the short of it,” Journal of Financial Markets, Institutions and money, 8, 117-153.
    Morey, M. R. and Simpson , M. W.(2001), “To hedge or not to hedge: The performance of simple strategies for hedging foreign exchange rate risk,” Journal of Multinational Financial Management, 11, 213-223.
    Preminger, A. and Franck, R. (2007), “Forecasting Exchange rates: A Robust Regression Approach,” International Journal of Forecasting, Volume 23, Issue 1, 71-84.
    Simpson, M. W. and Dania, A. (2006), “ Selective hedging the euro,” Journal of Multinational Financial Management, 16, 27-42.
    VanderLinden, D., Jiang, C. X. and Hu, M. (2002), “Conditional hedging and portfolio performance,” Financial Analysts Journal, 58, 72-82.
    Description: 碩士
    國立政治大學
    金融研究所
    99352005
    100
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0099352005
    Data Type: thesis
    Appears in Collections:[Department of Money and Banking] Theses

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2430View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback