English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52559335      Online Users : 897
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/54182
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/54182


    Title: 類神經網路與基因演算法在投資策略上的應用
    The application of artificial neural network and genetic algorithm on investment strategy
    Authors: 戴維志
    Contributors: 廖四郎
    戴維志
    Keywords: 類神經網路
    基因演算法
    Date: 2011
    Issue Date: 2012-10-30 10:14:54 (UTC+8)
    Abstract: 近年來,在財務領域中,有越來越多的人想藉助人工智慧系統來幫助我們做預測與處理最佳化的問題,而類神經網路與基因演算法為兩種最常見的處理系統,可幫助我們監控與做出適當的決策。而本文特別針對以上兩種系統,分別在不同的領域中,做出適當的應用。

    在類神經網路方面,本文試圖結合配對交易來建構出一套能獲利的交易模式。由於在配對交易的部分,進出場時機的門檻值是影響獲利的一大重要關鍵,因此若能利用類神經網路輔佐我們的交易並預測適當的進出場時機,或許可提高我們的交易績效與報酬。

    而在基因演算法的部分,由於此演算法的最主要功能是處理最佳化問題,因此本文試圖用基因演算法建構最佳化的投資組合,結果指出,利用此方法所得之投資組合在單位風險值的衡量之下,有較好的報酬表現。
    Reference: 李忠和 (2007) , 相對價值套利法則-台灣股市之配對交易績效分析 , 逢甲大學經濟學系碩士班碩士論文。

    林萍珍 (2008) , 投資分析:含Matlab應用、類神經網路與遺傳演算法模型 , 新陸書局出版。

    林逸塵 (2002) , 類神經網路應用於空氣品質預測之研究 , 國立中山大學環境工程研究所碩士論文。

    羅華強 (2005) , 類神經網路 - MATLAB的應用 , 高立圖書出版。

    蘇木春、張孝德 (2004) , 機器學習:類神經網路、模糊系統以及基因演算法則 , 全華圖書出版。

    Chang, P. C., Liu, C. H., Lin, J. L., Fan, C.Y., and Celeste S.P. Ng. (2009)
    A neural network with a case based dynamic window for stock trading prediction. Expert Systems with Applications 36, 6889–6898.

    Chavarnakul, T and Enke, D. (2008) Intelligent technical analysis based equivolume charting for stock trading using neural networks. Expert Systems with Applications 34, 1004–1017.

    Faria, E. L., Albuquerque, M. P., Gonzalez, J.L., Cavalcante, J.T.P., and Albuquerque, M. P. (2009) Predicting the Brazilian stock market through neural networks and adaptive exponential smoothing methods. Expert Systems with Applications, 36, 12506–12509.

    Huang, C. F. (2012) A hybrid stock selection model using genetic algorithms and support vector regression. Applied Soft Computing , 12 , 807–818.

    Jasemi, M., Kimiagari, A. M. and Memariani, A. (2011) A modern neural network model to do stock market timing on the basis of the ancient investment technique of Japanese Candlestick. Expert Systems with Applications 38, 3884–3890.

    Liao, Z. and Wang, J.(2010) Forecasting model of global stock index by stochastic time effective neural network. Expert Systems with Applications 37, 834–841.

    Lin, C. C. and Liu, Y. T. (2008) Genetic algorithms for portfolio selection problems with minimum transaction lots. European Journal of Operational Research , 185 , 393–404.

    Lin, P. C. and Ko, P. C. (2009) Portfolio value-at-risk forecasting with GA-based extreme value theory. Expert Systems with Applications 36, 2503–2512.


    Oh, K. J., Kim, T. Y., Min, S. H. and Lee H.Y. (2006) Portfolio algorithm based on portfolio beta using genetic algorithm. Expert Systems with Applications 30, 527–534.

    Potvina, J. Y., Sorianoa P. and Vall`ee, M. (2004) Generating trading rules on the stock markets with genetic programming. Computers & Operations Research 31, 1033–1047.

    Vidyamurthy, G. (2004) Pairs Trading: Quantitative Methods and Analysis, John Wiley & Sons.
    Description: 碩士
    國立政治大學
    金融研究所
    99352002
    100
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0099352002
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback