English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51736111      Online Users : 620
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/51587
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/51587


    Title: 動態輻狀基底函數類神經網路建構之研究
    Dynamic Implement Radial Basis Function Networks
    Authors: 林祐宇
    Contributors: 蔡炎龍
    Tsai,Yen lung
    林祐宇
    Keywords: 輻狀基底函數
    暫時性輻狀基底函數
    類神經網路
    時間序列
    RBF
    temporal RBF
    ANN
    time series
    Date: 2009
    Issue Date: 2011-10-11 16:56:07 (UTC+8)
    Abstract: 近年來輻狀基底函數類神經網路 (Radial Basis Function Networks , RBFN) 應用在時間序列相關問題上已有相當的成果。在這篇論文裡,我們嘗試建構一個電腦軟體工具,可以很容易造出 RBFN,應用在時間序列預測相關問題上。更進一步的說,我們的電腦工具可以輕易做出即時修正,完全符合使用者的需求。我們一開始先複習 RBFN 的基本架構, 並說明如何應用到時間序列的問題上。接著我們研究近年來相當受到重視的 T-RBF (Temporal RBF) 架構。最後,我們解釋如何使用 Adobe Flex 去建構我們所需要的電腦軟體工具。這個工具是跨平台的程式,並且不論是雲端計算或是單機應用皆很合適。
    During recent years, applying Radial Basis Function Networks (RBFN) to
    time series problems yields many important results. In this thesis, we
    try to implement a cross-platform computer tool that can easily
    construct a RBFN applied to time series forecasting problems. Moreover,
    the RBFN created by this computer tool can do real-time modification
    to fit specific needs. We first review the basic structures of RBFN
    and explain how it can be applied to time series problems. Then, we
    survey on so called temporal radial basis function (T-RBF) model,
    which draws much attention these years. Finally, we explain how we
    use Adobe Flex to create a computer tool as we mentioned in the
    beginning. The computer application is cross-platform and is suitable
    for both cloud computing and desktop applications.
    Reference: [1] M. D. Buhmann. Radial basis functions. Acta Numerica, 2000.
    [2] S. Chen, C.F.N. Cowan, and P.M. Grant. Orthogonal least squares learning algorithm for radial basis function networks. Neural Networks, IEEE Transac- tions on, 2(2):302 –309, mar 1991.
    [3] S.P. Day and M.R. Davenport. Continuous-time temporal back-propagation with adaptable time delays. Neural Networks, IEEE Transactions on, 4(2):348 –354, mar 1993.
    [4] Mustapha Guezouri. A New Approach Using Temporal Radial Basis Function in Chronological Series, 2008.
    [5] Simon Haykin. Neural Networks: A Comprehensive Foundation (2nd Edition). Prentice Hall, 2 edition, July 1998.
    [6] Robert J. Howlett and Lakhmi C. Jain. Radial Basis Function Networks 1: Re- cent Developments in Theory and Applications. Physica-Verlag HD; 1 edition, April 27, 2001.
    [7] Daw-Tung Lin, Judith E. Dayhoff, and Panos A. Ligomenides. A Learning Algorithm for Adaptive Time-Delays in a Temporal Neural Network. 1992.
    [8] D.T. Lin. The Adaptive Time-Delay Neural Network: Characterization and Applications to Pattern Recognition, Prediction and Signal Processing. 1994.
    [9] D.T. Lin and J.E. Dayhof. Network Unfolding Algorithm and Universal Spa- tiotemporal Function Approximation. Technical research report tr95-6, Insti- tute for system research ISR, University of Maryland, 1995.
    [10] M. J. D. Powell. Radial basis functions for multivariable interpolation: a review. pages 143–167, 1987.
    [11] N.K. Sinha and B. Kuszta. Modeling and identification of dynamic systems. Van Nostrand Reinhold, New York, 1983.
    [12] C. Wohler and J.K. Anlauf. Real time object recognition on image se- quences with adaptable time delay neural network algorithm -application to autonomous vehicles. Image and Vision, 19(9–10):593–618, 2001.
    [13] P. Yee and S. Haykin. A dynamic regularized radial basis function network for nonlinear, nonstationary time series prediction. Signal Processing, IEEE Transactions on, 47(9):2503 –2521, sep 1999.
    [14] Paul V. Yee and Simon Haykin. Regularized radial basis function networks : theory and applications. Wiley-Interscience; 1 edition, April 2, 2001.
    [15] 張斐章、張麗秋、黃浩倫. 類神經網路理論與實務. 東華書局, 2004.
    [16] 張麗秋、林永堂、張斐章. Building Radial Basic Function Neural Network by Integrating OLS and SGA for Flood Forecasting. Journal of Taiwan Water Conservancy, 2005.
    [17] 林永堂. A Study of Combined OLS with SGA to Construct RBF Neural Networks for Flood Forecasting. 2004.
    [18] 陳冠廷. The Application of Artificial Neural Networks in a Case-Based Design Wind Load Expert System for Tall Buildings. 2008.
    [19] 陳映中. An Rbf Neural Network Method for Image Progressive Transmission. 2000.
    Description: 碩士
    國立政治大學
    應用數學研究所
    96751012
    98
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0096751012
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    101201.pdf4104KbAdobe PDF2804View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback