政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/37099
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114409/145439 (79%)
造訪人次 : 53231108      線上人數 : 469
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/37099
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/37099


    題名: 一個有關開票的問題
    About A Ballot Problem
    作者: 楊蘭芬
    貢獻者: 李陽明
    楊蘭芬
    關鍵詞: 好路徑
    一路領先
    a good path
    leading all the way
    日期: 2008
    上傳時間: 2009-09-19 12:08:46 (UTC+8)
    摘要: 本篇論文主要在討論兩個人參選時的開票情況,研究「n+m人投票且無人投廢票的情況下,其中一人至少得n票且一路領先的開票方法數等於此人得n票的所有開票方法數」 ,第一章介紹研究動機及他人所使用的方式,使用路徑的方法證明一人得n票,另一人得m票,n≥m,得n票的人一路領先且勝出的方法數等於 C_n^(m+n)-C_(n+1)^(m+n)=C_m^(m+n)-C_(m-1)^(m+n),再用計算相消的方式算出,此人至少得n票且一路領先的開票方法數等於此人得n票的所有開票方法數。
    第二章介紹用一個折路徑的方法,將所有「一人得n票開票方法數」中非一路領先的路徑圖,經由一個壓扁、翻轉的摺紙方式,對應到「此人至少得n票且一路領先」的開票情況路徑圖,經由數學論證,這樣的路徑,是一對一且映成,並舉出兩個例子驗證其結果。
    論文最後,提出一個猜想:若參選人數為三人時,其中一位參選人一路領先且勝出的開票方法數,應該可以用立體空間的方塊圖之路徑來證明。本篇論文,雖然沒有繼續討論這個有趣的問題,但也留下一個新的研究方向。
    The theme of this thesis is mainly to discuss of situation of counting and announcing the ballots in an election with two candidates. In explaining the contents of the "Total n+m votes, there’s no invalid vote. One candidate wins at least n votes and lead all the way. Under this circumstance this number of the way will be equal to all numbers of the way for these n votes of this candidate.” At first, we will introduce the methodology of the other adopt, the methodology of previous path of way proves one candidate known to have n votes, another candidate has m votes, the method of candidate with n votes who leads all the way and won will be equal to C_n^(m+n)-C_(n+1)^(m+n)=C_m^(m+n)-C_(m-1)^(m+n), and then result of calculating cancellation will prove this candidate will have at last n votes and leads the way to victory will be equal to all the methodologies of counting and announcing the ballots in this election.
    A method of flip the path will be introduced in the second chapter.
    Corresponding to the road map of ballot counting for the candidate who has n votes and lead the way to victory, the road map of same one with n votes without leading the way through a step-ping, flip the way of origami will be mathematically proves such reflect of the way will be reflect one to one and onto. By means of the discrete method is able to prove this result and the method to verify availability
    Finally, I would like to propose a surmise: If the number of candidates increased to 3, the methodology of the one who leads all the way should be able to use three-dimensional space of a block diagram of the path to prove. Although this thesis does not to continue pondering the interesting question, but also left a new research direction.
    參考文獻: [1] John H. Conway and Richard Guy, The Book of Numbers. New York: Copernicus, 1996.
    [2] Tom Davis. Catalan Numbers.http://www.geometer.org/mathcircles .November 26, 2006.
    [3] Catalan Eugene. (1844): Note extraite d’une lettre adress´ee,J. Reine Angew. Math., 27 :192.
    [4] Martin Gardner (1988), Time Travel and Other Mathematical Bewilderments, New York: W.H. Freeman and Company.
    [5] Richard P. Stanley (1999), Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, http://www-math.mit.edu/~rstan/ec/ .
    [6] Alan Tucker. Applied Combinatorics. New York: John Wiley & Sons,Inc,1995.
    [7] http://cplee8tcfsh.blogspot.com/2007/02/blog-post_8619.html
    描述: 碩士
    國立政治大學
    應用數學研究所
    95972012
    97
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0095972012
    資料類型: thesis
    顯示於類別:[應用數學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    201201.pdf92KbAdobe PDF2903檢視/開啟
    201202.pdf162KbAdobe PDF2987檢視/開啟
    201203.pdf236KbAdobe PDF21046檢視/開啟
    201204.pdf323KbAdobe PDF21340檢視/開啟
    201205.pdf813KbAdobe PDF21070檢視/開啟
    201206.pdf127KbAdobe PDF21199檢視/開啟
    201207.pdf121KbAdobe PDF21052檢視/開啟
    201208.pdf277KbAdobe PDF21019檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋